Skip to main content

Reconstructing Multivariate Functions from Large Data Sets

  • Conference paper
Modern Developments in Multivariate Approximation

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 145))

  • 110 Accesses

Abstract

In this paper we discuss an efficient method for reconstructing multivariate functions from large sets of scattered data. Our method is based on (conditionally) positive definite kernels and a partition of unity. It is tailored to solve such reconstruction problems efficiently even if the space dimension is high and the number of data points is huge. We generalize the classical interpolation approach to dealing with other information than point evaluations. Finally, we demonstrate the generality of our approach by providing three different examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuska, J. M. Melenk: The partition of unity method, Int. J. Numer. Methods Eng. 40 (1997), 727–758.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. K. Beatson, L. Greengard: A short course on fast multipole methods. In Wavelets, multilevel methods and elliptic PDEs. 7th EPSRC numerical analysis summer school, University of Leicester, Leicester, GB, July 8–19, 1996, M. Ainsworth et al. (eds.), Clarendon Press, Oxford, 1997, pp. 1–37.

    Google Scholar 

  3. A. Beckert, H. Wendland: Multivariate interpolation for fluid-structureinteraction problems using radial basis functions. Aerosp. Sci. Technol. 5 (2001), 125–134.

    MATH  Google Scholar 

  4. R. Brownlee, W. Light: Approximation orders for interpolation by surface splines to rough functions. Preprint, Leicester, 2002.

    Google Scholar 

  5. J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, T. R. Evans: Reconstruction and representation of 3D objects with radial basis functions. In Computer Graphics Proceedings, Annual Conference Series (2001), Addison Wesley, pp. 67–76.

    Google Scholar 

  6. R. Franke: Smooth interpolation of scattered data by local thin plate splines, Comput. Math. Appl. 8 (1982), 273–281.

    MATH  MathSciNet  Google Scholar 

  7. W. R. Madych, S. A. Nelson: Multivariate interpolation and conditionally positive definite functions, Approximation Theory Appl. 4 (1988), 77–89.

    MATH  MathSciNet  Google Scholar 

  8. W. R. Madych, S. A. Nelson: Multivariate interpolation and conditionally positive definite functions II, Math. Comput. 54 (1990), 211–230.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. J. Narcowich, J. D. Ward: Scattered-data interpolation on IRn: Error estimates for radial basis and band-limited functions. preprint 2002.

    Google Scholar 

  10. R. Schaback: Error estimates and condition number for radial basis function interpolation. Adv. Comput. Math. 3 (1995), 251–264.

    MATH  MathSciNet  Google Scholar 

  11. R. Schaback: Native Hilbert spaces for radial basis functions I. In New Developments in Approximation Theory. 2nd international Dortmund meeting (IDoMAT) ’98, Germany, February 23–27, 1998, M. W. Müller et al. (eds.), Int. Ser. Numer. Math. 132, Birkhäuser, Basel 1999, pp. 255–282.

    Google Scholar 

  12. R. Schaback, H. Wendland: Characterization and construction of radial basis functions. In Multivariate Approximation with Applications, N. Dyn, D. Leviatan, D. Levin, A. Pinkus (eds.), Cambridge University Press, Cambridge 2001, pp. 1–24.

    Chapter  Google Scholar 

  13. H. Wendland: Fast evaluation of radial basis functions: Methods based on partition of unity. In Approximation Theory X: Wavelets, Splines, and Applications, C. K. Chui, L. L. Schumaker, J. Stöckler (eds.), Vanderbilt University Press, pp. 473–483.

    Google Scholar 

  14. H. Wendland: Surface reconstruction from unorganized points. Preprint, Göttingen 2002.

    Google Scholar 

  15. Z. Wu: Hermite-Birkhoff interpolation of scattered data by radial basis functions. Approximation Theory Appl. 8 (1992), 1–10.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Wendland, H. (2003). Reconstructing Multivariate Functions from Large Data Sets. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds) Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol 145. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8067-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8067-1_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9427-2

  • Online ISBN: 978-3-0348-8067-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics