Skip to main content

Almost Interpolation and Radial Basis Functions

  • Conference paper
Modern Developments in Multivariate Approximation

Part of the book series: International Series of Numerical Mathematics ((ISNM,volume 145))

  • 109 Accesses

Abstract

After a review of some basic facts for Radial Basis Interpolation, we introduce the idea of almost interpolation for RBF, and show that in this setting it is possible to enlarge quite a lot the set of basic radial functions that can be used as basis. Our main result provides a Schoenberg-Whitney type condition for almost interpolation sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Aronszajn: Theory of reproducing kernelsTrans. Amer. Math. Soc. 68 (1950), 337–404.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Atteia: Hilbertian Kernels and Spline Functions, North—Holland, Amsterdam, 1992.

    Google Scholar 

  3. S. Bergman: The Kernel Function and Conformal Mapping, Math. Surveys AMS V (1950).

    Book  Google Scholar 

  4. A. Bouhamidi, A. Le Méhauté: Multivariate interpolating (m,l,$) splines, Adv. Comput. Math. 11 (1999), 287–314.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. D. Buhmann: Radial functions on compact support, Proc. Edinburgh Math. Soc. 41 (1998), 33–46.

    MATH  MathSciNet  Google Scholar 

  6. M. D. Buhmann. Radial basis functions, Acta Numerica (2000), 1–38.

    Google Scholar 

  7. O. Davydov: On almost interpolation, J. Approx. Theory 91 (1997), 398–418.

    Article  MATH  MathSciNet  Google Scholar 

  8. O. Davydov, M. Sommer, H. Strauss: Locally linearly independent systems and almost interpolation, In: Multivariate Approximation and Splines, G. Nürnberger, J. W. Schmidt, G. Walz (eds.), Birkhäuser, Basel, 1997.

    Google Scholar 

  9. J. Duchon: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces, RAIRO Anal. Numer. 10 (1976), 5–12.

    MathSciNet  Google Scholar 

  10. N. Dyn, D. Levin, S. Rippa: Numerical procedures for global surface fitting of scattered data by radial functions,SIAM J. Sci. Statist. Comput. 7 (1986), 639–659.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Floater, A. Iske: Multistep scattered data interpolation using compactly supported radial basis functions,J. Comput. Appl. Math. 73 (1996), 65–78.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. Guo, S. Hu, X. Sun: Conditionally positive definite functions and Laplace-Stieltjes integral, J. Approx. Theory 74 (1993), 249–265.

    Google Scholar 

  13. R. L. Hardy: Multiquadric equations of topographic and other irregular surfaces, J. Geophys. Res. 76 (1971), 1905–1915.

    Article  Google Scholar 

  14. E. Kansa: A strictly conservative spatial approximation scheme for the governing engineering and physics equations over irregular regions and inhomogeneous scattered nodes, UCRI 101634, Lawrence Livermore National Laboratory (1989).

    Google Scholar 

  15. E. Kansa: Multiquadrics. A scattered data approximation scheme with applications to computational fluid dynamics. I. Surface approximation and partial derivatives estimates, II. Solutions to parabolic, hyperbolic and elliptic PDE’s., Comput. Math. Appl. 19 (1990), 127–145 and 147–161.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Le Méhauté: Inf-convolution and radial basis functions, in: New Developments in Approximation Theory, M. W. Müller, M. Buhmann, D. Mache, M. Felten (eds.), ISNM, vol. 132 Birkhäuser, Basel, (1999)

    Google Scholar 

  17. A. Le Méhauté: Approximation par splines Hilbertiennes, Cours de DEA, Postgraduate lectures, Université de Nantes, 2002.

    Google Scholar 

  18. W. R. Madych, S. A. Nelson: Multivariate interpolation and conditionally positive definite functions, J. Approx. Theory and its Applications 4 (1988), 77–89.

    MATH  MathSciNet  Google Scholar 

  19. C.Micchelli: Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx. 2 (1986), 11–22.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Poggio, F. Girosi: Networks for approximation and learning, in: Proceed. IEEE 78 (9) (1990), 1481–1497.

    Article  Google Scholar 

  21. M. Powell: The theory of radial basis functions approximation in 1990, in: Advances in Numerical Analysis 2 (1992), 105–208.

    Google Scholar 

  22. R. Schaback: Reconstruction of multivariate functions from scattered data,manuscript.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Méhauté, A.L. (2003). Almost Interpolation and Radial Basis Functions. In: Haussmann, W., Jetter, K., Reimer, M., Stöckler, J. (eds) Modern Developments in Multivariate Approximation. International Series of Numerical Mathematics, vol 145. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8067-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8067-1_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9427-2

  • Online ISBN: 978-3-0348-8067-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics