Skip to main content

Finite-element Discretizations of Semiconductor Energy-transport Equations

  • Conference paper
Modeling, Simulation, and Optimization of Integrated Circuits

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 146))

  • 480 Accesses

Abstract

Energy-transport models describe the flow of electrons in a semiconductor crystal. Several formulations of these models, in the primal or dual entropy variables or in the drift-diffusion-type variables, are reviewed. A numerical discretization of the steady-state drift-diffusion-type formulation using mixed-hybrid finite elements introduced by Marini and Pietra is presented. The scheme is first applied to the simulation of a one-dimensional ballistic diode with non-parabolic band diagrams. Then a two-dimensional deep submicron MOSFET device with parabolic bands is simulated, using an adaptively refined mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Apanovich, P. Blakey, R. Cottle, E. Lyumkis, B. Polsky, A. Shur, and A. Tcherniaev. Numerical simulations of submicrometer devices including coupled nonlocal transport and nonisothermal effects. IEEE Trans. Electr. Dev., 42:890–897, 1995.

    Article  Google Scholar 

  2. N. Ben Abdallah and P. Degond. On a hierarchy of macroscopic models for semiconductors. J. Math. Phys., 37:3308–3333, 1996.

    Article  Google Scholar 

  3. F. Bosisio, R. Sacco, F. Saleri, and E. Gatti. Exponentially fitted mixed finite volumes for energy balance models in semiconductor device simulation. In H. Bock et al., editors, Proceedings of ENUMATH 97, pages 188–197, Singapore, 1998. World Scientific.

    Google Scholar 

  4. K. Brennan. The Physics of Semiconductors. Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  5. F. Brezzi, L. Marini, S. Micheletti, P. Pietra, R. Sacco, and S. Wang. Discretization of semiconductor device problems. In W. Schilders and E. ter Maten, editors, Handbook of Numerical Analysis. Numerical Methods for Electrodynamical Problems,to appear, 2002. North-Holland-Elsevier Science Publishers.

    Google Scholar 

  6. F. Brezzi, L. Marini, and P. Pietra. Numerical simulation of semiconductor devices. Comp. Meth. Appl. Mech. Engrg.,75:493–514, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Brezzi, L. Marini, and P. Pietra. Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Num. Anal., 26:1342–1355, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Cassan, S. Galdin, P. Dollfus, and P. Hesto. Comparison between device simulators for gate current calculation in ultra-thin gate oxide n-MOSFETs. IEEE Trans. Elect. Dev., 83:1194–1202, 2000.

    Google Scholar 

  9. D. Chen, E. Kan, U. Ravaioli, C. Shu, and R. Dutton. An improved energy transport model including nonparabolicity and non-Maxwellian distribution effects. IEEE Electr. Dev. Letters, 13:26–28, 1992.

    Article  Google Scholar 

  10. M. Crouzeix and P.A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equation. RAIRO,7:33–76, 1973.

    MathSciNet  Google Scholar 

  11. P. Degond, S. Génieys, and A. Jüngel. A system of parabolic equations in nonequilibrium thermodynamics including thermal and electrical effects. J. Math. Pures Appl., 76:991–1015, 1997.

    MathSciNet  MATH  Google Scholar 

  12. P. Degond, S. Génieys, and A. Jügel. A steady-state system in nonequilibrium thermodynamics including thermal and electrical effects. Math. Meth. Appl. Sci., 21:1399–1413, 1998.

    Article  MATH  Google Scholar 

  13. P. Degond, A. Jüngel, and P. Pietra. Numerical discretization of energy-transport model for semiconductors with non-parabolic band structure. SIAM J. Sci. Comp., 22:986–1007, 2000.

    Article  MATH  Google Scholar 

  14. W. Fang and K. Ito. Existence of stationary solutions to an energy drift-diffusion model for semiconductor devices. Math. Models Meth. Appl. Sci., 11:827–840, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan, and G. Baccarani. A new discretization strategy of the semiconductor equations comprising momentum and energy balance. IEEE Trans. Comp. Aided Design Integr. Circuits Sys., 7:231–242, 1988.

    Article  Google Scholar 

  16. M. Fournié. Numerical discretization of energy-transport model for semiconductors using high-order compact schemes. Appl. Math. Lett., 15:727–734, 2002.

    Article  MathSciNet  Google Scholar 

  17. J. Griepentrog. An application of the implicit function theorem to an energy model of the semiconductor theory. Z. Angew. Math. Mech., 79:43–51, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Hoist, A. Jüngel, and P. Pietra. A mixed finite-element discretization of the energy-transport model for semiconductors. To appear in SIAM J. Sci. Comp., 2002.

    Google Scholar 

  19. S. Hoist, A. Jüngel, and P. Pietra. An adaptive mixed scheme for energy-transport simulations of field-effect transistors. Submitted for publication, 2002.

    Google Scholar 

  20. R. Hoppe and B. Wohlmuth. A comparison of a posteriori error estimators for mixed finite element discretization by Raviart-Thomas elements. Math. Comp., 68:1347–1378.

    Google Scholar 

  21. J. Jerome. Analysis of charge transport. A mathematical study of semiconductor devices. Springer, Berlin, 1996.

    Google Scholar 

  22. J. Jerome and C.-W. Shu. Energy models for one-carrier transport in semiconductor devices. In W. Coughran et al., editors, Semiconductors, Part II, volume 59 of IMA Volumes in Math. and Its Appl., pages 185–207, New York, 1994. Springer.

    Google Scholar 

  23. A. Jüngel. Quasi-hydrodynamic Semiconductor Equations. Birkhauser, Basel, 2001.

    Book  Google Scholar 

  24. E. Kane. Band structure of indium-antimonide. J. Phys. Chem. Solids, 1:249–261, 1957.

    Article  Google Scholar 

  25. C. Lab and P. Caussignac. An energy-transport model for semiconductor heterostructure devices: application to AlGaAs/GaAs MODFETs. COMPEL, 18:61–76, 1999.

    Article  MATH  Google Scholar 

  26. L.D. Marini and P. Pietra. An abstract theory for mixed approximations of second order elliptic equations. Mat. Aplic. Comp., 8:219–239, 1989.

    MathSciNet  MATH  Google Scholar 

  27. L.D. Marini and P. Pietra. New mixed finite element schemes for current continuity equations. COMPEL, 9:257–268, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  28. P.A. Markowich, C.A. Ringhofer, and C. Schmeiser. Semiconductor Equations. Springer, Vienna, 1990.

    Book  MATH  Google Scholar 

  29. A. Marrocco and P. Montarnal. Simulation des modelès energy-transport à l’aide des éléments finis mixtes. C. R. Acad. Sci. Paris, 323:535–541, 1996.

    MathSciNet  MATH  Google Scholar 

  30. A. Marrocco, P. Montarnal, and B. Perthame. Simulation of the energy-transport and simplified hydrodynamic models for semiconductor devices using mixed finite elements. In Proceedings ECCOMAS 96, London, 1996. John Wiley.

    Google Scholar 

  31. P. Raviart and J. Thomas. A mixed finite element method for second order elliptic equations. In Mathematical Aspects of the Finite Element Method, volume 606 of Lecture Notes in Math., pages 292–315. Springer, 1977.

    Google Scholar 

  32. C. Ringhofer. An entropy-based finite difference method for the energy transport system. Math. Models Meth. Appl. Sci., 11:769–796, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Rudan, A. Gnudi, and W. Quade. A generalized approach to the hydrodynamic model of semiconductor equations. In G. Baccarani, editor, Process and Device Modeling for Microelectronics, Amsterdam, 1993. Elsevier.

    Google Scholar 

  34. C. Schmeiser and A. Zwirchmayr. Elastic and drift-diffusion limits of electron-phonon interaction in semiconductors. Math. Models Meth. Appl. Sci., 8:37–53, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  35. K. Seeger. Semiconductor Physics. An Introduction. 6th edition, Springer, Berlin, 1997.

    MATH  Google Scholar 

  36. K. Souissi, F. Odeh, H. Tang, and A. Gnudi. Comparative studies of hydrodynamic and energy transport models. COMPEL,13:439–453, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Stratton. Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev., 126:2002–2014, 1962.

    Article  Google Scholar 

  38. P. Visocky. A method for transient semiconductor device simulation using hot-electron transport equations. In J. Miller, editor, Proc. of the Nasecode X Conf., Dublin, 1994. Boole Press.

    Google Scholar 

  39. B. Wohlmuth. A residual based error estimator for mortar finite element discretizations. Num. Math., 84:143–171, 1999.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Holst, S., Jüngel, A., Pietra, P. (2003). Finite-element Discretizations of Semiconductor Energy-transport Equations. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds) Modeling, Simulation, and Optimization of Integrated Circuits. ISNM International Series of Numerical Mathematics, vol 146. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8065-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8065-7_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9426-5

  • Online ISBN: 978-3-0348-8065-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics