Skip to main content

Modeling Circuit Systems Coupled with Distributed Semiconductor Equations

  • Conference paper
Modeling, Simulation, and Optimization of Integrated Circuits

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 146))

Abstract

For a refined network analysis, we are interested in circuit simulation including distributed models of semiconductors. We construct a mathematical model for nonlinear electric networks containing semiconductors described by the drift-diffusion equations. The focus lies on the coupling of the network DAEs and the semiconductor PDEs.

Furthermore, we study the behavior of the coupled systems with respect to time-dependent perturbations of the right-hand side using an index concept for abstract DAEs. We present a network topological criterion that guarantees index-1 systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Albinus, H. Gajewski, and R. Hiinlich. Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2) (2002), 367–383.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. All, A. Bartel, M. Gunther, and C. Tischendorf. Elliptic partial differential-algebraic multiphysics models in electrical network design. Technical Report 02/05, Institute of Scientific Computing and Mathematical Modeling, University of Karlsruhe, 2002. To appear in Math. Models Meth. Appl. Sci. 2003.

    Google Scholar 

  3. M. Arnold and M. Gunther. Preconditioned dynamic iteration for coupled differential-algebraic systems. BIT Numerical Mathematics 41 (2001), 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  4. S.L. Campbell and W. Marszalek. The Index of an Infinite-Dimensional Implicit System. Math. Comput. Model. Dyn. Syst. 5(1) (1999), 18–42.

    Article  MathSciNet  MATH  Google Scholar 

  5. W.L. Engl, R. Laur, and H.K. Dirks. MEDUSA — A simulator for modular circuits. IEEE Trans. CAD 1(2) (1982), 85–93.

    Google Scholar 

  6. D. Estevez Schwarz and C. Tischendorf. Structural analysis of electric circuits and consequences for MNA. Int. J. Circ. Theor. Appl. 28 (2000), 131–162.

    Article  Google Scholar 

  7. H. Gajewski. Analysis and Numerik des Ladungstransports in Halbleitern. GAMM Mitteilungen 16 (1993), 35–57.

    MathSciNet  Google Scholar 

  8. H. Gajewski and K. Groger. On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113 (1986), 12–35.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Gajewski and K. Groger. Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics. Math. Nachr. 140 (1989), 7–36.

    Article  MathSciNet  MATH  Google Scholar 

  10. K. Gröger. Initial boundary value problems from semiconductor device theory. ZAMM 67(8) (1987), 345–355.

    Article  MATH  Google Scholar 

  11. M. GĂĽnther. Partielle differential-algebraische Systeme in der numerischen Zeitbereichsanalyse elektrischer Schaltungen. Number 343 in Fortschritt-Berichte VDI, Reihe 20, Rechnerunterstiitzte Verfahren. VDI Verlag, Dusseldorf, 2001. Habilitation.

    Google Scholar 

  12. M. Günther. A PDAE model for interconnected linear RLC networks. Mathematical and Computer Modelling of Dynamical Systems 7(2) (2001), 189–203.

    Article  MATH  Google Scholar 

  13. A. Jüngel. Quasi-hydrodynamic Semiconductor Equations. Birkhäuser, Basel, 2001.

    Book  MATH  Google Scholar 

  14. R. Lamour, R. März, and C. Tischendorf. PDAEs and further mixed systems as abstract differential algebraic systems. Technical Report 01–11, Institute of Mathematics, Humboldt-Univ. of Berlin, 2001.

    Google Scholar 

  15. J. Litsios, B. SchmithĂĽsen, U. Krumbein, A. Schenk, E. Lyumkis, B. Polsky, and W. Fichtner. DESSIS 3.0 Manual. ISE Integrated Systems Engineering, Zurich, 1996.

    Google Scholar 

  16. W. Lucht, K. Strehmel, and C. Eichler-Liebenow. Indexes and special discretization methods for linear partial differential algebraic equations. BIT 39(3) (1999), 484–512.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. A. Markowich, C. A. Ringhofer, and C. Schmeiser. Semiconductor equations. Springer Verlag Wien, 1990.

    Book  MATH  Google Scholar 

  18. F.M. RoteIla. Mixed circuit and device simulation for analysis, design, and optimization of opto-electronic, radio frequency, and high speed semiconductor devices. PhD thesis, Stanford University, 2000.

    MATH  Google Scholar 

  19. S. Scharfenberg. Mixed-Level Circuit-Device Simulation auf einem heterogenen Workstation-Cluster. Shaker Verlag, 1996. PhD thesis.

    Google Scholar 

  20. D. Schroeder. Modelling of Interface Carrier Transport for Device Simulation. Computational Microelectronics. Springer-Verlag, Wien New York, 1990.

    Google Scholar 

  21. S. Selberherr. Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien New York, 1984.

    Book  Google Scholar 

  22. S. M. Sze. Physics of Semiconductor Devices. John Wiley & Sons, New York, 1981.

    Google Scholar 

  23. C. Tischendorf. Coupled systems of partial and differential algebraic equations in circuit and device simulation. Modeling and numerical analysis. Submitted as habilitation thesis at Humboldt Univ. of Berlin, 2003.

    Google Scholar 

  24. C. Tischendorf. Topological index calculation of DAEs in circuit simulation. Surv. Math. Ind. 8 (1999), 187–499.

    MathSciNet  MATH  Google Scholar 

  25. G. Wachutka. Unified framework for thermal, electrical, magnetic, and optical semiconductor device modeling. COMPEL 5 (1991), 311–321.

    Article  Google Scholar 

  26. G. Wachutka. Consistent treatment of carrier emission and capture kinetics in electrothermal and energy transport models. Microelectronics Journal 26 (1995), 307–315.

    Article  Google Scholar 

  27. C. Wasshuber, H. Kosina, and S. Selberherr. SIMON - A simulator for single-electron tunnel devices and circuits. IEEE CAD 16(9) (1997), 937–944.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Tischendorf, C. (2003). Modeling Circuit Systems Coupled with Distributed Semiconductor Equations. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds) Modeling, Simulation, and Optimization of Integrated Circuits. ISNM International Series of Numerical Mathematics, vol 146. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8065-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8065-7_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9426-5

  • Online ISBN: 978-3-0348-8065-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics