Skip to main content

Feasibility Regions and their Significance to the Hierarchical Optimization of Analog and Mixed-Signal Systems

  • Conference paper
Modeling, Simulation, and Optimization of Integrated Circuits

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 146))

Abstract

Physical effects have to be considered throughout the design of analog integrated circuits. The difficulties in modeling these effects at higher levels of abstraction is a major obstacle for a top-down analog design that proceeds from high to low levels of abstraction. This paper discusses a hierarchical top-down design style with feasibility regions as a means to describe physical effects at different levels of abstraction. We suggest a method to calculate linearized approximations to the feasibility regions at higher levels based on Fourier-Motzkin elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Antreich, J. Eckmueller, H. Graeb, M. Pronath, F. Schenkel, R. Schwencker, and S. Zizala. WiCkeD: Analog circuit synthesis incorporating mismatch. In IEEE Custom Integrated Circuits Conference (CICC), pages 511–514, May 2000.

    Google Scholar 

  2. H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt, E. Liu, E. Malavasi, A. Sangiovanni-Vincentelli, and I. Vassiliou. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits. Kluwer Academic Publishers, 1997.

    Google Scholar 

  3. S.N. Chernikov. Lineare Ungleichungen. Deutscher Verlag der Wissenschaften, 1971.

    MATH  Google Scholar 

  4. T. Christof and A. Loebel. Porta — polyhedron representation transformation algorithm. http://www.zib.de/Optimization/Software/Porta/index.html.

  5. T. Christof and G. Reinelt. Combinatorial optimization and small polytopes. Top (Spanish Statistical and Operations Research Society), 4:1–64, 1996.

    MathSciNet  MATH  Google Scholar 

  6. G. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.

    MATH  Google Scholar 

  7. G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatorial Theory (A), 14:288–297, 1973.

    Article  MathSciNet  Google Scholar 

  8. N. Dhanwada, A. Nunez-Aldana, and R. Vemuri. Hierarchical constraint transformation using directed interval search for analog system synthesis. In Design, Automation and Test in Europe (DATE),1999.

    Google Scholar 

  9. H. Graeb, S. Zizala, J. Eckmueller, and K. Antreich. The sizing rules method for analog integrated circuit design. In IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages 343–349, 2001.

    MATH  Google Scholar 

  10. R. Harjani and J. Shao. Feasibility and performance region modeling of analog and digital circuits. Analog Integrated Circuits and Signal Processing, 10(1):23–43, June 1996.

    Article  Google Scholar 

  11. M. Jimenez, J. Llaberia, and A. Fernandez. Loop bounds computation for multilevel tiling. In Sixth Euromicro Workshop on Parallel and Distributed Processing, 1998.

    Google Scholar 

  12. C.W. Kessler. Parallel Fourier-Motzkin elimination. In Euro-Par ‘86, 1996.

    Google Scholar 

  13. W. Pugh. A practical algorithm for exact array dependence analysis. Communications of the ACM, 1992.

    Google Scholar 

  14. G. Van der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche, G. Gielen, W. Sansen, P. Veselinovic, and D. Leenaerts. AMGIE—A synthesis environment for CMOS analog integrated circuits. IEEE Transactions on Computer-Aided Design of Circuits and Systems, 20(9):1037–1058, Sept. 2001.

    Article  Google Scholar 

  15. G.M. Ziegler. Lectures on Polytopes. Springer Verlag, New York, 1995.

    Book  MATH  Google Scholar 

  16. S. Zizala, J. Eckmueller and H. Graeb. Fast calculation of analog circuits’ feasibility regions by low level functional measures. In IEEE Int. Conf. on Electronics, Circuits and Systems, pages 85–88, Sept. 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Stehr, G., Graeb, H., Antreich, K. (2003). Feasibility Regions and their Significance to the Hierarchical Optimization of Analog and Mixed-Signal Systems. In: Antreich, K., Bulirsch, R., Gilg, A., Rentrop, P. (eds) Modeling, Simulation, and Optimization of Integrated Circuits. ISNM International Series of Numerical Mathematics, vol 146. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8065-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8065-7_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9426-5

  • Online ISBN: 978-3-0348-8065-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics