Skip to main content

Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases

  • Chapter

Part of the book series: Progress in Drug Research ((PDR,volume 61))

Abstract

Parkinson’s disease (PD) is characterized by a progressive degeneration of the substantia nigra pars compacta dopamine neurons that innervate the striatum [1]. The loss of striatal dopamine and the consequent dysfunction of the nigrostriatal pathway lead to the cardinal symptoms of PD: resting tremor, cogwheel rigidity, bradykinesia (or difficulty to initiate movement) and loss of postural reflex. Current pharmacological treatment strategies for PD aim at replacing striatal dopamine using the dopamine precursor levodopa or dopamine receptor agonists, or both. Such treatments provide symptomatic relief, but do not slow or halt continued degeneration of nigral dopaminergic neurons. Therefore, interventions that could potentially slow or reverse the progression of neuronal degeneration would benefit PD patients. One such approach involves trophic factor administration. Trophic factors are proteins with enormous therapeutic potential in the treatment of neurodegenerative diseases. However, delivery of these proteins to the brain remains a challenge. Theoretically, a variety of different routes of administration could be used to deliver neurotrophic factors to the diseased brain, including intracranial (e.g. intraparenchymal), intranasal, intrathecal and parenteral (e.g. intravenous, subcutaneous or intramuscular) administration. Parenteral administration requires the drug to enter the brain from the systemic circulation by crossing the blood-brain barrier.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

GDNF:

glial cell line-derived neurotrophic factor

GPI:

glycosyl-phosphatidylinositol

HVA:

homovanillic acid

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropiridine

MRI:

magnetic resonance imaging

O.D.:

outer diameter

PD:

Parkinson’s disease

TGF:

transforming growth factor

References

  1. Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339: 1044–1053

    Article  PubMed  CAS  Google Scholar 

  2. Thorne RG, Frey WH II (2001) Delivery of neurotrophic factors to the central nervous system, pharmacokinetic considerations. Clin Pharmacokinet 40: 907–946

    Article  PubMed  CAS  Google Scholar 

  3. Zurn AD, Widmer HR, Aebischer P (2001) Sustained delivery of GDNF: towards a treatment for Parkinson’s disease. Brain Res Rev 36: 222–229

    Article  PubMed  CAS  Google Scholar 

  4. Olson L (1996) Toward trophic treatment in parkinsonism: A primate step. Nat Med 2: 400–401

    Article  PubMed  CAS  Google Scholar 

  5. Collier TJ, Sortwell CE (1999) Therapeutic potential of nerve growth factors in Parkinson’s disease. Drugs Aging 14: 261–87

    Article  PubMed  CAS  Google Scholar 

  6. Hornykiewicz O (1993) Parkinson’s disease and the adaptive capacity of the nigrostriatal dopamine system: possible neurochemical mechanisms. Adv Neurol 60: 140–147

    PubMed  CAS  Google Scholar 

  7. Gash DM, Zhang Z, Gerhardt GA (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44: S121–S125

    PubMed  CAS  Google Scholar 

  8. Grondin R, Gash DM (1998) Glial cell line-derived neurotrophic factor (GDNF) as a drug candidate for the treatment of Parkinson’s disease. J Neurol 245 (Suppl 3): S35–S42

    Article  Google Scholar 

  9. Lin L-FH, Doherty DH, Lile JD, Bektesh S, Collins F (1993) GDNF: A glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260: 1130–1132

    Article  PubMed  CAS  Google Scholar 

  10. Lin L-FH, Zhang TJ, Collins F, Armes LG (1994) Purification and initial characterization of rat B49 glial cell line-derived neurotrophic factor. I Neurochem 63: 758–768

    Article  CAS  Google Scholar 

  11. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, Milbrandt J (1996) Neurturin, a relative of glial cell line-derived neurotrophic factor. Nature 384: 467–470

    Article  PubMed  CAS  Google Scholar 

  12. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS et al (1998) Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron 20: 245–253

    Article  PubMed  CAS  Google Scholar 

  13. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Toshiyuki A, Johnson EM Jr, Milbrant J (1998) Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRa1pha3-Ret receptor complexe. Neuron 21: 1291–1302

    Article  PubMed  CAS  Google Scholar 

  14. Strömberg I, Bjorklund L, Johansson M, Tomac A, Collins F, Olson L, Hoffer B, Humpel C (1993) Glial cell line-derived neurotrophic factor is expressed in the developing but not adult striatum and stimulates developing dopamine neurons in vivo. Exp Neurol 124: 401–412

    Article  Google Scholar 

  15. Springer JE, Mu X, Bergmann, LW, Trojanoski JQ (1994) Expression of GDNF mRNA in rat and human nervous tissue. Exp Neurol 127: 167–170

    Article  PubMed  CAS  Google Scholar 

  16. Suter-Crazzolara C, Unsicker K (1994) GDNF is expressed in two forms in many tissues outside the CNS. Neuro Report 5: 2486–2488

    CAS  Google Scholar 

  17. Choi-Lundberg DL, Bohn MC (1995) Ontogeny and distribution of glial cell line-derived neurotrophic factor (GDNF) mRNA in rat. Dev Brain Res 85: 80–88

    Article  CAS  Google Scholar 

  18. Trupp M, Ryden M, Jornavall C, Funakoshi H, Timmusk T, Arenas E, Ibanez CF (1995) Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol 130: 137–148

    Article  PubMed  CAS  Google Scholar 

  19. Jing S, Wen D, Yu Y, Hoist PL, Luo Y, Fang M, Tamir R, Antonio L, Hu Z, Cupples R et al (1996) GDNF-induced activation of the Ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85: 1113–1124

    Article  PubMed  CAS  Google Scholar 

  20. Treanor JJS, Goodman L, de Sauvage F, Stone DM, Poulsen KT, Beck CD, Gray C, Armanini MP, Pollock RA, Hefti F et al (1996) Charaterization of a multicomponent receptor for GDNF. Nature 382: 80–83

    Article  PubMed  CAS  Google Scholar 

  21. Baloh RH, Tansey MG, Golden JP, Creedon DJ, Heuckeroth RO, Keck CL, Zimonjic DB, Popescu NC, Johnson EM Jr, Milbrandt J (1997) TrnR2, a novel receptor that mediates neurturin and GDNF signalling through Ret. Neuron 18: 793–802

    Article  PubMed  CAS  Google Scholar 

  22. Naveilhan P, Baudet C, Mikaels A, Shen L, Westphal H, Ernfors P (1998) Expression and regulation of GFRalpha3, a glial cell line-derived neurotrophic factor family receptor. Proc Natl Acad Sci USA 95: 1295–1300

    Article  PubMed  CAS  Google Scholar 

  23. Thompson J, Doxakis E, Pinon LGP, Strachan P, Buj-Bello A, Wyatt S, Buchman VL, Davies AM (1998) GFRalpha4, a new GDNF family receptor. Mol Cell Neurosci11: 117–126

    Article  PubMed  CAS  Google Scholar 

  24. Hou J-GG, Lin L-FH, Mytilinenou C (1996) Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium. I Neurochem 66: 74–82

    Article  CAS  Google Scholar 

  25. Hoffer BJ, Hoffman A, Bowenkamp K, Huettl P, Hudson J, Martin D, Lin L-FH, Gerhardt G (1994) Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 182: 107–111

    Article  CAS  Google Scholar 

  26. Bowenkamp KE, Hoffman AF, Gerhardt GA, Henry MA, Biddle PT, Hoffer BJ, Granholm A-CE (1995) Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol 355: 479–489

    Article  PubMed  CAS  Google Scholar 

  27. Tomac A, Lindqvist E, Lin L-FH, Ogren SO, Young D, Hoffer BJ, Olson L (1995) Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 373: 335–339

    CAS  Google Scholar 

  28. Kearns C, Gash DM (1995) GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res 672: 104–111

    CAS  Google Scholar 

  29. Lapchak PA, Miller PJ, Collins F, Jiao S (1997) Glial cell line-derived neurotrophic factor attenuates behavioural deficits and regulates nigrostriatal dopaminergic and peptidergic markers in 6-hydroxydopamine-lesioned adult rats: Comparison of intraventricular and intranigral delivery. Neuroscience 78: 61–72

    Article  PubMed  CAS  Google Scholar 

  30. Ovadia A, Zhang Z, Gash DM (1995) Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys. Neurobiol Aging 16: 931–937

    Article  PubMed  CAS  Google Scholar 

  31. Gash DM, Zhang Z, Ovadia A, Cass WA, Yi A, Simmerman L, Russell D, Martin D, Lapchak PA, Collins F et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380: 252–255

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Z, Miyoshi Y, Lapchak PA, Collins F, Hilt D, Lebel C, Kryscio R, Gash DM (1997) Dose response to intraventricular glial cell line-derived neurotrophic factor administration in parkinsonian monkeys. J Pharmacol Exp Ther 282: 1396–1401

    PubMed  CAS  Google Scholar 

  33. Costa S, Iravani MM, Pearce RK, Jenner P (2001) Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur JPharmacol 412: 45–50

    Article  CAS  Google Scholar 

  34. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen E-Y, Palfi S, Zion Roitberg B et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290: 767–773

    Article  PubMed  CAS  Google Scholar 

  35. Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ (2000) Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 886: 82–98

    Article  PubMed  CAS  Google Scholar 

  36. Kafri T, van Praag H, Gage FH, Verma IM (2000) Lentiviral vectors: regulated gene expression. Mol Ther 1: 516–521

    Article  PubMed  CAS  Google Scholar 

  37. Olson L (2000) Combating Parkinson’s disease-step three. Science 290: 721–724

    Article  PubMed  CAS  Google Scholar 

  38. Bjorklund A, Lindvall A (2000) Parkinson’s disease gene therapy moves towards the clinic. Nature Med 6: 1207–1208

    Article  PubMed  CAS  Google Scholar 

  39. Grondin R, Zhang Z, Elsberry D, Gerhardt GA, Gash DM (2001) Chronic intracerebral delivery of trophic factors via a programmable pump as a treatment for parkinsonism. In: MM Mouradian (ed): Parkinson’s disease-methods & protocols. Humana Press, Totowa, NJ, 62: 257–267

    Google Scholar 

  40. Bankiewicz KS, Oldfield EH, Chiueh CC, Doppman JL, Jacobowitz DM, Kopin IJ (1986) Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 39: 7–16

    Article  PubMed  CAS  Google Scholar 

  41. Smith RD, Zhang Z, Kurlan R, McDermott M, Gash DM (1993) Developing a stable bilateral model of parkinsonism in rhesus monkeys. Neuroscience 52: 7–16

    Article  PubMed  CAS  Google Scholar 

  42. Emborg-Knott ME, Domino EF (1998) MPTP-induced hemiparkinsonism in nonhuman primates 6–8 years after a single unilateral intracarotid dose. Exp Neurol 152: 214–220

    Article  PubMed  CAS  Google Scholar 

  43. Jellinger K (1986) Overview of morphological changes in Parkinson’s disease. Adv Neurol 45: 1–17

    Google Scholar 

  44. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striaturn of patients with idiopathic Parkinson’s disease. Pathophysiology and clinical implications. N Eng J Med 318: 876–880

    Article  CAS  Google Scholar 

  45. Grondin R, Zhang Z, Cass WA, Ai Y, Maswood N, Andersen AH, Elsberry DD, Klein MC, Gerhardt GA, Gash DM (2002) Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain 125: 2191–2201

    Article  PubMed  Google Scholar 

  46. Grondin R, Zhang Z, Ai Y, Surgener SP, Loveland AD, Gerhardt GA, Gash DM (2002) Chronic, pulsatile delivery of GDNF into the substantia nigra increases motor speed and dopamine levels in the basal ganglia of MPTP-treated parkinsonian monkeys. Soc Neurosci Abst 28: 691.3

    Google Scholar 

  47. Bennett DA, Beckett LA, Murray AM, Shannon KM, Goetz CG, Pilgrim DM, Evans DA (1996) Prevalence of parkinsonian signs and associated mortality in a community population of older people. New Engl J Med 334: 71–76

    Article  PubMed  CAS  Google Scholar 

  48. Smith C, Umberger G, Manning EL, Slevin JT, Wekstein DR, Markesbery WR, Zhang Z, Gerhardt GA, Gash DM (1999) A critical decline in fine motor hand movements in human aging. Neurology 53: 1458–1461

    Article  PubMed  CAS  Google Scholar 

  49. Emborg ME, Ma SY, Mufson EJ, Levey AI, Taylor MD, Brown WD, Holden JE, Kordower JH (1998) Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. J Comp Neurol 401: 253–265

    Article  PubMed  CAS  Google Scholar 

  50. Zhang Z, Andersen A, Smith C, Grondin R, Gerhardt GA, Gash DM (2000) Motor slowing and parkinsonian signs in aging rhesus monkeys mirror human aging. J Gerontol Biol Sci 55A: 473–480

    Article  Google Scholar 

  51. Gerhardt GA, Cass WA, Yi A, Zhang Z, Gash DM (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80: 168–177

    Article  PubMed  CAS  Google Scholar 

  52. Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L, Wu C, Lu B (2001) GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nature Neurosci 4: 1071–1078

    Article  PubMed  CAS  Google Scholar 

  53. Andersen AH, Zhang Z, Zhang M, Gash DM, Avison MJ (1999) Age-associated changes in rhesus CNS composition identified by MRI. Brain Res 829: 90–98

    Article  PubMed  CAS  Google Scholar 

  54. Grondin R, Cass WA, Zhang Z, Stanford JA, Gash DM, Gerhardt GA (2003) Glial cell linederived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J Neurosci 23: 1974–1980.

    PubMed  CAS  Google Scholar 

  55. Maswood N, Grondin R, Zhang Z, Stanford JA, Surgener SP, Gash DM, Gerhardt GA (2002) Effects of chronic intraputamenal infusion of glial cell line-derived neurotrophic factor (GDNF) in aged rhesus monkeys. Neurobiol Aging 23: 881–889

    Article  PubMed  CAS  Google Scholar 

  56. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws Jr ER, Lozano AM, Penn RD, Simpson Jr RK, Stacy M, Wooten GF (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60: 69–73.

    Article  PubMed  CAS  Google Scholar 

  57. Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, Cochran EJ, Mufson EJ, Penn R, Goetz CG, Comella CD (1999) Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 46: 419–424

    Article  PubMed  CAS  Google Scholar 

  58. Yi A, Markesbery W, Zhang Z, Grondin R, Elseberry D, Gerhardt GA, Gash DM (2003) Intraputamenal infusion of GDNF in aged rhesus monkeys: distribution and dopaminergic effects. J Comp Neurol 461: 250–261

    Article  Google Scholar 

  59. Brundin P (2002) GDNF treatment in Parkinson’s disease: Time for controlled clinical trials? Brain 125: 1449–1451

    Article  Google Scholar 

  60. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell-line derived neurotrophic factor in Parkinson’s disease. Nat Med 9: 589–595

    Article  PubMed  CAS  Google Scholar 

  61. Langston JW, Widner H, Goetz CG, Brooks D, Fahn S, Freeman T, Watts R (1992) Core assessment program for intracerebral transplantations (CAPIT). Mov Disord7: 2–13

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Grondin, R., Zhang, Z., Ai, Y., Gash, D.M., Gerhardt, G.A. (2003). Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. In: Prokai, L., Prokai-Tatrai, K. (eds) Peptide Transport and Delivery into the Central Nervous System. Progress in Drug Research, vol 61. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8049-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8049-7_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9420-3

  • Online ISBN: 978-3-0348-8049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics