Skip to main content

Neuropeptides: general characteristics and neuropharmaceutical potential in treating CNS disorders

  • Chapter
Peptide Transport and Delivery into the Central Nervous System

Part of the book series: Progress in Drug Research ((PDR,volume 61))

Abstract

Earlier concepts of the neuroendocrine system integrated the regulatory functions of the nervous and endocrine systems, a concept that was developed from the understanding of hypothalamic control over the secretions of the anterior pituitary gland and pituitary control of its target endocrine organs. Demonstration of feedback controls, chiefly negative, furthered the argument for an intimate relationship between the nervous and endocrine systems. However, the role of the hypothalamic and pituitary hormones, all of which are peptides, is not restricted to their classical endocrine actions but extends to profound effects on the CNS. Experiments showing that adrenocorticotropic hormone (ACTH) affects complex behavioral processes such as learning and memory in adrenalectomized rats, demonstrated clearly that this peptide was acting directly on CNS neurons, bypassing its endocrine target, the adrenal cortex. This concept of a direct action was extended to learning and memory in humans, as well as to the peripheral neuromuscular system through the use of synthetic fragments of ACTH devoid of adrenocortical-stimulating activity [1-4] (see sections 5.1.2 and 5.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Ach:

acetylcholine

ACTH:

adrenocorticotrophic hormone

AD:

Alzheimer's disease

AgRP:

agouti-related protein

Arg:

arginine

CGRP:

calcitonin-gene related peptide

CCK:

cholecystokinin

CNS:

central nervous system

CRH:

corticotropin-releasing hormone

DRG:

dorsal root ganglia

ER:

endoplasmic reticulum

GABA:

Îł-aminobutyric acid

GH:

growth hormone

GHRH:

growth hormone releasing hormone

HPA:

hypothalamic-anterior pituitary-adrenal axis

IGF-I:

insulin-like growth factor

Lys:

lysine

MSH:

melanocyte-stimulating hormone

NMDA:

N-methyl-D-aspartate

OT:

oxytocin

PC:

prohormone convertase

POMC:

proopiomelanocortin

PPP:

pancreatic polypeptide

PRL:

prolactin

RER:

rough endoplasmic reticulum

ST:

somatostatin

TRH:

thyrotropin-releasing hormone

VIP:

vasoactive intestinal peptide

VP:

vasopressin

References

  1. DeWied D (1969) Effects of peptide hormones on behavior. In: WF Ganong, L Martini (eds): Frontiers in Neuroendocrinology. Oxford University Press, New York, 97–140

    Google Scholar 

  2. Sandman CA, Schally AV, Kastin AJ, Miller L H (1972) A neuroendocrine influence on attention and memory. J Comp Physiol Psychol 80: 54–58

    PubMed  CAS  Google Scholar 

  3. Kastin AJ, Olson RD, Schally A V, Coy DH (1979) CNS effects of peripherally administered brain peptides. Life Sci 25: 401–414

    PubMed  CAS  Google Scholar 

  4. Strand FL, Saint-Come C, Lee TS, Lee SJ, Kume JA, Zuccarelli LA (1993) An ACTH/MSH 4–10 analog BIM 22015 has neurotrophic and myotrophic attributes during peripheral nerve regeneration. Peptides 14: 4–10

    PubMed  CAS  Google Scholar 

  5. Strand FL (1999) Neuropeptides: Regulators of Physiological Processes. The MIT Press, Cambridge, MA, 11–12

    Google Scholar 

  6. Strand FL, Segarra AC, Zuccarelli LA, Kume J, Rose KJ (1990) Neuropeptides as neuronal growth regulating factors. Ann NY Acad Sci 579: 68–80

    PubMed  CAS  Google Scholar 

  7. Hökfelt T, Zhang X, Wiesenfeld-Hallin Z (1994) Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci 17: 22–30

    PubMed  Google Scholar 

  8. Stefano GB (1989) Opioid peptides - comparative peripheral mechanisms. In: S Holmgren (ed): Comparative Physiology of Regulatory Peptides. Chapman and Hall, New York, 122–129

    Google Scholar 

  9. Acher R, Chauvet J (1995) The neurohypophyseal regulatory cascade. Front Neuroendocrinol 16: 237–289

    PubMed  CAS  Google Scholar 

  10. Acher R (1980) Molecular evolution of biologically active polypeptides. Proc Soc Lond Biol Sci 210: 1–43

    Google Scholar 

  11. Blobel G, Dobberstein B (1975) Transfer of proteins across membranes. J Cell Biol 67: 835–851

    PubMed  CAS  Google Scholar 

  12. Mains RE, Cullen EI, May V, Eipper BA (1987) The role of secretory granules in peptide biosynthesis. Ann NY Acad Sci 493: 279–291

    Google Scholar 

  13. Rouille Y, Duguay S J, Lund K, Furuta M, Gong QM, Lipkind G, Oliva AA, Chan SJ, Steiner DF (1995) Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides. Front Neuroendocrinol 16: 322–361

    PubMed  CAS  Google Scholar 

  14. Nakanishi SY, Inoue I, Kita T, Nakamura M, Chang ACY, Cohen SN, Numa S (1979) Nucleotide sequence of cloned DNA for bovine corticotropin/13-lipotropin precursor. Nature 278: 423–429

    PubMed  CAS  Google Scholar 

  15. Nakanishi S, Teranishi Y, Wananabe Y, Notake M, Noda M, Kakidani H, Jingami H, Numa S (1981) Isolation and characterization of the bovine corticotropin/β-lipotropin precursor gene. Eur J Biochem 115: 429–438

    PubMed  CAS  Google Scholar 

  16. Schlegel W, Mollard P (1995) Electrical activity and stimulus-secretion coupling in neuroendocrine cells. In: H Scheriibl, H Hescheler (eds): The Electrophysiology of Neuroendocrine Cells. CRC Press, Boca Raton, Florida, 23–38

    Google Scholar 

  17. Nicholls DG (1994) Proteins, Transmitters and Synapses. Blackwell, Oxford, 142–152

    Google Scholar 

  18. Burgoyne RD, Morgan A (1995) Ca2+ and secretory-vesicle dynamics. Trends Neurosci 18: 191–196

    PubMed  CAS  Google Scholar 

  19. Hökfelt T, Holets VR, Staines W, Meister B, Melander T, Schalling M, Schultzberg M, Freedman J, Bjorklundh H, Olson L, Lindh B et al (1986) Coexistence of neuronal messengers - an overview. Prog Brain Res 68: 33–70

    PubMed  Google Scholar 

  20. Lundberg JM, Hökfelt T (1985) Coexistence of peptides and classical neurotransmitters. In: Neurotransmitters in action. Prog Brain Res 68: 33–70

    Google Scholar 

  21. Peng Y, Horn JP (1991) Continuous repetitive stimuli are more effective than bursts for evoking LHRH release in bullfrog sympathetic ganglia. J Neurosci 11: 85–95

    PubMed  CAS  Google Scholar 

  22. Gibbins IL (1989) Co-existence and co-function. In: S Holmgren (ed): The Comparative Physiology of Regulatory Peptides. Chapman and Hall, New York, 308–343

    Google Scholar 

  23. Fuxe K, Li X-M, Tanganelli S, Hedlund P, Oconnor WT, Ferraro L, Ungerstedt U, Agnati LF (1995) Receptor-receptor interactions and their relevance for receptor diversity-focus on neuropeptide/dopamine interactions. Ann NY Acad Sci 757: 365–376

    PubMed  CAS  Google Scholar 

  24. Kucherlapati R (2002) Genetics, genomics and the practice of medicine. Regul Pept 108: 1 (Abstract)

    Google Scholar 

  25. Wong J, Love DR, Kyle C (2002) Melanocortin-3 receptor gene variants in a Maori kindred with obesity and early onset type 2 diabetes. Diab Res Clin Pract 58: 61–71

    CAS  Google Scholar 

  26. Bowers CY (1999) GH releasing peptides (GHRPs). In: J Kostyo, H Goodman (eds) Handbook of Physiology. Oxford University Press, New York, 267–297

    Google Scholar 

  27. Saad MF, Bernaba B, Hwu CM, Jinagouda S, Fahmi S, Kogosov E, Boyadjian R (2002) Insulin regulates plasma ghrelin concentration. I Clin Endocrinol Metab 87: 3997–4000

    CAS  Google Scholar 

  28. Horvath TL, Diano S, Sotonyi P, Heiman M, Tschop M (2001) Minireview: Ghrelin and the regulation of energy balance - a hypothalamic perspective. Endocrinology 142: 4163–4169

    PubMed  CAS  Google Scholar 

  29. Banks WA, Tschop M, Robinson SM, Heiman ML (2002) Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique structure. Pharmacol Exper Ther 302: 822–827

    CAS  Google Scholar 

  30. Arvat E, Maccario M, Di Vito L, Broglio F, Benso A, Gottero C, Papotti M, Muccioli G, Dieguez C, Casanueva FF, Deghenghi R et al (2001) Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interaction with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. Clin Endocrinol Metab 86: 1169–1174

    CAS  Google Scholar 

  31. Bowers CY (2001) Unnatural growth hormone-releasing peptide begets natural ghrelin. Clin Endocrinol Metab 86: 1464–1469

    CAS  Google Scholar 

  32. Gehlert DR (1999) Role of hypothalamic neuropeptide Y in feeding and obesity. Neuropeptides 33: 329–338

    PubMed  CAS  Google Scholar 

  33. Sakurai T (1999) Orexins and orexin receptors: implication in feeding behavior. Regul Pept 85: 25–30

    PubMed  CAS  Google Scholar 

  34. Clegg DJ, Air EL, Woods SC, Seeley RJ (2002) Eating elicited by orexin-a but not by melanin-concentrating hormone, is opioid mediated. Endocrinol 143: 2995–3000

    CAS  Google Scholar 

  35. Fadel J, Bubser M, Deutch AY (2002) Differential activation of orexin neurons by antipsychotic drugs associated with weight gain. J Neurosci 22: 6742–6746

    PubMed  CAS  Google Scholar 

  36. Sunter D, Morgan I, Edwards CMB, Dakin Cl, Murphy KG, Gardiner J, Taheri S, Rayes E, Bloom SR (2001) Orexins: effects on behavior and localization of orexin receptor 2 messenger ribonucleic acid in the rat brainstem. Brain Res 907: 27–34

    PubMed  CAS  Google Scholar 

  37. Tahari S, Zeitzer JM, Mignot E (2002) The role of hypocretins (orexins) in sleep regulation and narcolepsy. Annu Rev Neurosci 25: 283–3313

    Google Scholar 

  38. Crawley JN (1999) The role of galanin in feeding behavior. Neuropeptides 33: 369–375

    PubMed  CAS  Google Scholar 

  39. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek J, Kanarek R, Maratos-Flier E (1996) A role for melanin-concentrating hormone in the central regulation of feeding behavior. Nature 380: 243–247

    PubMed  CAS  Google Scholar 

  40. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22: 221–232

    PubMed  CAS  Google Scholar 

  41. Gibbs J, Young R C, Smith G P (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84: 488–495

    PubMed  CAS  Google Scholar 

  42. Strand FL, Alves SE, Antonawich FJ, Lee SJ, Lee TS, Zuccarelli LA (1994) Developing and regenerating systems as models for trophic effects of ACTH neuropeptides. In: T Palomo, T Archer, T Beninger (eds): Strategies for studying brain disorders: Vol 2. Schizophrenia, movement disorders and age related cognitive disorders. Farrand Press, London, 389–407

    Google Scholar 

  43. Heisler LK, Cowley MA, Tecott LH, Fan W, Low MJ, Smart JL, Rubinstein M, Tatro JB, Marcus JN, Holstege H, Lee CE et al (2002) Activation of central melanocortin pathways by fenfluramine. Science 297: 609–611

    PubMed  CAS  Google Scholar 

  44. Heinrichs SC, Richard D (1999) The role of corticotropin-releasing factor and urocortin in the modulation of ingestive behavior. Neuropeptides 33: 350–359

    PubMed  CAS  Google Scholar 

  45. Larhammar D, Blomqvist, Soderberg C (1993) Evolution of the neuropeptide Y family of peptides. In: WF Colmers, C Wahlenstedt (eds): The biology of neuropeptide Y and related peptides. Totawa, New Jersey, 1–42

    Google Scholar 

  46. Conlon JM (2002) The origin and evolution of peptide YY (PYY) and pancreatic polypeptide (PP). Peptides 23: 269–278

    PubMed  Google Scholar 

  47. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (2000) Central nervous control of food intake. Nature 404: 661–671

    PubMed  CAS  Google Scholar 

  48. Batterham RL, Cowley MJ, Small CJ, Herzog H, Cohen MA, Dakin CL, Wren AM, Brynes AE, Low MJ, Ghatei MA, Cone RD et al (2002) Gut hormone PYY (3–36) physiologically inhibits food intake. Nature 418: 3–36

    PubMed  CAS  Google Scholar 

  49. Edwards CMB, Cohen MA, Bloom SR (1999) Peptides as drugs. Q J Med 92: 1–4

    CAS  Google Scholar 

  50. Lloyd RV, Jin L, Tsumanuma I, Vidal S (2001) Leptin and leptin receptor in anterior pituitary function. Pituitary 4: 33–47

    PubMed  CAS  Google Scholar 

  51. Ahima RS, Prabakaran D, Mantzoros C, Qu DQ Lowell B, Maratos-Flier E, Flier JS (1996) Role of leptin in the neuroendocrine response to fasting. Nature 382: 250–252

    PubMed  CAS  Google Scholar 

  52. Ahima RS, Prabakaran D, Flier JS (1998) Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. J Clin Invest 101: 1020–1027

    PubMed  CAS  Google Scholar 

  53. Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG 1997) Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46: 2119–2123

    PubMed  CAS  Google Scholar 

  54. Thornton JE, Cheung CC, Clifton DK, Steiner RA (1997) Regulation of hypothalamic proopiomelanocortin mRNA by leptin in ob/ob mice. Endocrinol 138: 5063–5066

    CAS  Google Scholar 

  55. Ludwig DS, Mountjoy KG, Tatro JB, Gillette JA, Frederich RC, Flier JS, Maratos-Flier E (1998) Melanin-concentrating hormone: a functional melanocortin antagonist in the hypothalamus. Am J Physiol 274: E627–E633

    PubMed  CAS  Google Scholar 

  56. Lawrence CB, Ellacott, KLJ, Luckman SM (2002) PRLreleasing peptide interacts with lep-tin to reduce food intake and body weight. Endocrinol 143: 368–374

    Google Scholar 

  57. Unger R H (2000) Leptin physiology: a second look. Regul Pept 92: 87–95

    PubMed  CAS  Google Scholar 

  58. Ahima RS, Kelly J, Elmquist JK, Flier JS (1999) Distinct physiologic and neuronal changes to decreased leptin and mild hyperleptinemia. Endocrinol 140: 4923–4931

    CAS  Google Scholar 

  59. Kok SW, Meinders AE, Overeem S, Lammers GJ, Roelfsema F, Frolich M, Pip H (2002) Reduction of leptin levels and loss of its circadian rhythm in hypocretin (orexin) deficient narcoleptic humans. J Clin Endocrinol Metab 87: 805–809

    PubMed  CAS  Google Scholar 

  60. De Wied D (1964) Influence of anterior pituitary on avoidance learning and escape behavior. Am J Physiol 207: 255–259

    Google Scholar 

  61. Kastin AJ, Plotnikoff, Schally AV, Sandman CA (1976) Endocrine and CNS effects of hypothalamic peptides and MSH. In: S Ehrenpreis, IJ Kopin (eds): Reviews of neuroscience. Raven Press, New York, 111–148

    Google Scholar 

  62. De Wied D (1999) Behavioral pharmacology of neuropeptides related to melanocortins and the neurohypophyseal hormones. Eur J Pharmacol 375: 1–11

    PubMed  Google Scholar 

  63. Kastin AJ, Ehrensing RH, Banks WA, Zadina JE (1987) Possible therapeutic implications of the effects of some peptides on the brain. Prog Brain Res 72: 223–234

    PubMed  CAS  Google Scholar 

  64. Kubek M J, Garg BP (2002) Thyrotropin-releasing hormone in the treatment of intractable epilepsy. Pediatric Neurol 26: 9–17

    Google Scholar 

  65. Baram TZ, Hatalski CG (1998) Neuropeptide-mediated excitability - a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci 21: 471–476

    PubMed  CAS  Google Scholar 

  66. Baram, TZ, Mitchell WG, Brunson K, Haden E (1999) Infantile spasms - Hypothesisdriven therapy and pilot human infant experiments using corticotropin-releasing hormone-receptor antagonists. Dev Neurosci 21: 281–289

    PubMed  CAS  Google Scholar 

  67. Davis KL, Mohs RC, Marin DB (1999) Neuropeptide abnormalities in patients with early Alzheimer’s disease. Archiv Gen Psychiatry 56: 981–987

    CAS  Google Scholar 

  68. Heininger K (2000) A unifying hypothesis of Alzheimer’s disease. Rev Neurosci 11: 213–328

    PubMed  Google Scholar 

  69. Oliver KR, Sirinathsinghji DJS, Hill RG (2000) From basic research on neuropeptide receptors to clinical benefit. Drug News Perspect 13: 530–542

    PubMed  CAS  Google Scholar 

  70. Emre M, Qizilbash N (2001) Experimental approaches and drugs in development for the treatment of dementia. Expert Opinion Investig Drugs 10: 607–617

    CAS  Google Scholar 

  71. Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug-dependence. Neuropsychopharmacol 18: 135–174

    CAS  Google Scholar 

  72. Hökfelt T, Pernow B, Wahren J (2001) Substance P - a pioneer amongst neuropeptides. J Intern Med 249: 27–40

    PubMed  Google Scholar 

  73. Holsboer F (2001) Prospects for antidepressant drug discovery. Biol Psychol 57: Spiss 47–65

    PubMed  CAS  Google Scholar 

  74. Makino S, Hashimoto K, Gold PW (2002) Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav 73: 147–158

    PubMed  CAS  Google Scholar 

  75. Heuser I (1998) Anika-Monika-Prize paper. The hypothalamic-pituitary-adrenal system in depression. Pharmacopsych 31: 10–13

    CAS  Google Scholar 

  76. Mitchell AJ (1998) The role of corticotropin-releasing factor in depressive illness - a critical review. Neurosci Biobehav Rev 22: 635–651

    PubMed  CAS  Google Scholar 

  77. Scott LV, Dinan TG (2002) Vasopressin as a target for antidepressant development: an assessment of the available evidence. J Affect Disorders 72: 113–207

    PubMed  CAS  Google Scholar 

  78. Steiger A, Holsboer F (1997) Neuropeptides and human sleep. Sleep 20: 1038–1052

    PubMed  CAS  Google Scholar 

  79. Steiger A, Antonijevic IA, Bohlhalter S, Frieboes RM, Friess E, Murck H (1998) Effects of hormones on sleep. Hormone Res 49: 125–130

    PubMed  CAS  Google Scholar 

  80. McDougle CJ, Barr LC, Goodman WK, Price LH (1999) Possible role of neuropeptides in: obsessive-compulsive disorder Psychoneuroendocrinol 24: 1–24

    CAS  Google Scholar 

  81. Rook GAW, Lightman SL, Heijnen CJ (2002) Can nerve damage disrupt neuroendocrine immune homeostasis? Leprosy as a case in point. Trends Immunol 23: 18–22

    PubMed  CAS  Google Scholar 

  82. Naafs B (2000) Current views on reactions in leprosy. Indian J Lepr 72: 97–122

    PubMed  CAS  Google Scholar 

  83. Tenbokum AMC, Hofland LJ, Vanhagen PM (2000) Somatostatin and somatostatin receptors in the immune system - A review. Eur Cytokine Network11: 161–176

    CAS  Google Scholar 

  84. Lotti T, Bianchi B, Ghersetich I, Brazzini B, Hercogova J (2002) Can the brain inhibit inflammation generated in the skin? The lesson of alpha-melanocyte-stimulating hormone. Intern J Dermatol 41: 311–318

    CAS  Google Scholar 

  85. Huygen FJPM, Debruijn AGK, Klein J (2001) Neuroimmune alterations in the complex regional pain syndrome. Eur J Pharmacol 429: Sp Iss: 101–113

    PubMed  CAS  Google Scholar 

  86. Vrinten DH, Adan RA, Groen GJ, Gispen WH (2001) Chronic blockade of melanocortin receptors alleviates allodynia in rats with neuropathic pain. Anesthesia and Analgesia 93: 1572–1577

    PubMed  CAS  Google Scholar 

  87. Catania A, Airaghi L, Garofalo L, Cutuli M, Lipton JM (1998) The neuropeptide alpha-MSH in HIV- infection and other disorders in humans. Ann NY Acad Sci 840: 848–85

    PubMed  CAS  Google Scholar 

  88. Strand FL, Rose KJ, King JA, Segarra AC, Zuccarelli LA (1989) ACTH modulation of nerve development and regeneration. Prog Neurobiol 33: 45–85

    PubMed  CAS  Google Scholar 

  89. Strand FL, Lee SJ, Lee TS, Zuccarelli LA, Antonawich FJ, Kume J, Williams, KA (1993) Noncorticotropic ACTH peptides modulate nerve development and regeneration. Rev Neurosci 4: 321–364

    PubMed  CAS  Google Scholar 

  90. Strand FL, Williams KA, Alves SE, Antonawich FJ, Lee TS, Lee SJ, Kume J, Zuccarelli, LA (1996) Melanocortins as factors in somatic neuromuscular growth and regrowth. In: C Bell (ed): Chemical factors in neural growth, degeneration and repair. Elsevier, Amsterdam, 311–337

    Google Scholar 

  91. Azmitia, EC, de Kloet E (1987) ACTH neuropeptide stimulation of serotinergic maturation in tissue culture: modulation by hippocampal cells. Prog Brain Res 72: 311–318

    PubMed  CAS  Google Scholar 

  92. Lee S J, Lee T S, Strand F L (1991) Local control of neurite outgrowth of dorsal root ganglia and spinal cord neurons by ACTH analog Org 2766, BIM 22015 and NGF. Soc Neurosci Abstract 598: 12

    Google Scholar 

  93. Van der Neut R E, Hol M, Gispen W H, Bar P R (1992) Stimulation by melanocortins of neurite outgrowth from spinal and sensory neurons in vitro. Peptides 13: 1109–1115

    PubMed  Google Scholar 

  94. Beckwith BE, Sandman CA, Hothersall D, Kastin AJ (1977) The influence of neonatal injections of α-MSHon learning, memory and attention in rats. Physiol Behav 18: 63–71

    PubMed  CAS  Google Scholar 

  95. Rose KJ, Frischer RE, King JA, Strand FL (1988) Neonatal neuromuscular parameters vary in susceptibility to ACTH/MSH 4–10 administration. Peptides 9: 4–10

    PubMed  CAS  Google Scholar 

  96. Segarra AC, Luine VN, Strand FL (1991) Sexual behavior of male rats is differentially affected by timing of perinatal ACTH administration. Physiol Behav 50: 689–697

    PubMed  CAS  Google Scholar 

  97. Alves SE, Akbari HM, Azmitia EC, Strand FL (1993) Neonatal ACTH and corticosterone alter hypothalamic monoamine innervation and reproductive parameters in the female rat. Peptides 14: 379–384

    PubMed  CAS  Google Scholar 

  98. Flohr H, Luneburg U (1989) Influence of melanocortin fragments on vestibular compensation. In: M Lacour, M Toupet, P Denise et al (eds): Vestibular compensation: facts, theories and clinical perspectives. Elsevier, Paris, 161–174

    Google Scholar 

  99. Nyakas C, Veldhuis HD, DeWied D (1985) Beneficial effects of chronic treatment with ORG 2766 and α-MSHon impaired reversal learning of rats with bilateral lesions of their parafascicular area. Brain Res Bull 15: 257–265

    PubMed  CAS  Google Scholar 

  100. Hannigan J, Isaacson R (1985) The effects of ORG 2766 on the performance of sham, neocortical and hippocampal-lesioned rats in a food search task. Pharmacol Biochem Behav 23: 1019–1027

    PubMed  CAS  Google Scholar 

  101. Attella M J, Hoffman S W, Pilotte M P, Stein DG (1992) Effects of BIM 22015, an analog of ACTH 4–10, on functional recovery after frontal cortex injury. Behav Neural Biol 57: 4–10

    PubMed  CAS  Google Scholar 

  102. Antonawich FJ, Azmitia EC, Strand FL (1993) Rapid neurotrophic actions of an ACTH/MSH (4–9) analog after nigrostriatal 6-OHDA lesioning. Peptides 14: 4–9

    PubMed  CAS  Google Scholar 

  103. Wolterink G, Van Zanten E, Kamsteeg K, Radhakishun FS, Vanree JM (1990) Functional recovery after destruction of dopamine systems in the nucleus accumbens of rats. II. Facilitation by the ACTH- (4–9) analog ORG 2766. Brain Res 507: 4–9

    PubMed  CAS  Google Scholar 

  104. Antonawich FJ, Azmitia EC, Kramer HK, Strand FL (1994) Specificity versus redundancy of melanocortins in nerve regeneration. Ann NY Acad Sci 739: 60–73

    PubMed  CAS  Google Scholar 

  105. Van der Hoop RG, Vecht CJ, Van der Burg MEL, Elderson A, Boogerd W, Heimans JJ, Vries EP, Van Houwelingen JC, Jennekens FGI, Gispen WH et al (1990) Prevention of cisplatin neurotoxicity with ACTH (4–10) analogue in patients with ovarian cancer. N Engl J Med 322: 4–10

    PubMed  Google Scholar 

  106. Bär PRD, Schrama LH, Gispen WH (1990) Neurotropic effects of ACTH/MSH-like peptides in the peripheral nervous system. In: D DeWied (ed): Neuropeptides: basics and perspectives. Elsevier, Amsterdam, 175–211

    Google Scholar 

  107. Strand FL, Stoboy H, Friedebold G, Krivoy W, Heyck H, Vanriezen H (1977) Changes in muscle action potentials of patients with diseases of motor units following the infusion of a peptide fragment of ACTH. Drug Res 27: 681–683

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Strand, F.L. (2003). Neuropeptides: general characteristics and neuropharmaceutical potential in treating CNS disorders. In: Prokai, L., Prokai-Tatrai, K. (eds) Peptide Transport and Delivery into the Central Nervous System. Progress in Drug Research, vol 61. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8049-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8049-7_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9420-3

  • Online ISBN: 978-3-0348-8049-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics