Skip to main content

The role of matrix metalloproteinases in LV remodeling following myocardial infarction

  • Chapter
Inflammation and Cardiac Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

  • 115 Accesses

Abstract

The major function of the extracellular matrix (ECM) is to provide a mechanical framework to hold cells together in tissue and organs. Besides this function, it is becoming widely accepted that the ECM is a dynamic entity that interacts with cells and regulates cell phenotype. In this regard, the matrix profoundly affects cell behavior through signaling by integrins, which form direct contacts between cells and the ECM [1]. Second, proteoglycans in the ECM sequester growth factors like TGF-ß, FGF, VEGF and various cytokines that regulate some of the most fundamental cellular processes, such as proliferation, differentiation and survival [2]. Third, in order for cells to migrate, they have to disconnect from the ECM and degrade the matrix molecules that lie along the path they want to traverse. To control their ECM turnover, to release growth factors from the ECM and to migrate through the ECM, cells produce a wide range of proteolytic enzymes, in particular the matrix metalloproteinases (MMPs). MMPs are involved in many physiological processes, such as embryonic development, ovulation, bone remodeling and wound healing and their enhanced activity has been implicated in numerous disease processes associated with inflammatory destruction or invasion of metastatic cancer [3-7]. MMPs, which are present in the myocardium are the driving force behind myocardial matrix remodeling. Recent studies have demonstrated that preventing the breakdown of the myocardial extracellular matrix with pharmacological broad spectrum MMP inhibitors in animal models of cardiomyopathy and myocardial infarction has favorable effects on the left ventricular (LV) remodeling process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross RS, Borg TK (2001) Integrins and the myocardium.Circ Res88: 1112–1119

    Article  PubMed  CAS  Google Scholar 

  2. Park PW, Reizes O, Bernfield M (2000) Cell surface heparan sulfate proteoglycans: Selective regulators of ligand-receptor encounters.J Biol Chem275: 29923–29926

    Article  PubMed  CAS  Google Scholar 

  3. Shalinsky DR, Brekken J, Zou H, McDermott CD, Forsyth P, Edwards D, Margosiak S, Bender S, Truitt G, Wood A et al (1999) Broad antitumor and antiangiogenic activities of AG3340, a potent and selective MMP inhibitor undergoing advanced oncology clinical trials.Ann NY Acad Sci878: 236–270

    Article  PubMed  CAS  Google Scholar 

  4. Lewis EJ, Bishop J, Bottomley KMK, Bradshaw D, Brewster M, Broadhurst MJ, Brown PA, Budd JM, Elliott L, Greenham AK et al (1997) Ro 32–3555, and orally active collagenase inhibitor, prevents cartilage breakdownin vitroandin vivo. Br J Pharmacol121: 540–546

    Article  CAS  Google Scholar 

  5. Witte MB, Thornton FJ, Kiyama T, Efron DT, Schultz GS, Moldawer LL, Barbul A (1998) Metalloproteinase inhibitors and wound healing: A novel enhancer of wound strength.Surgery124: 464–470

    Article  PubMed  CAS  Google Scholar 

  6. Galardy RE, Cassabonne ME, Giese C, Gilbert JH, Lapierre F, Lopez H, Schaefer ME, Stack R, Sullivan M, Summers B et al (1994) Low molecular weight inhibitors in corneal ulceration.Ann NY Acad Sci732: 315–323

    Article  PubMed  CAS  Google Scholar 

  7. Sierevolgel MJ, Pasterkamp G, Velema E, de Jaegere PPT, de Smet BJGL, Verheilen JH, de Kleijn DPV, Borst C (2001) Oral matrix metalloproteinase inhibition and arterial remodeling after balloon dilation.Circulation103: 302–306

    Article  Google Scholar 

  8. Gearing AJH, Beckett P, Christodoulou M, Churchill M, Clements J, Davidson AH, Drummond AH, Galloway WA, Gilbert R, Gordon JL et al (1994) Processing of tumour necrosis factor-alpha precursor by metalloproteinases.Nature370:555–557

    Article  PubMed  CAS  Google Scholar 

  9. Levi E, Fridman R, Miao HQ, Ma YS, Yayon A, Vlodaysky I (1996) Matrix metalloproteinase 2 releases active soluble ectodomain of fibroblast growth factor receptor 1.Proc Natl Acad Sci USA93: 7069–7074

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki M, Raab G, Moses MA, Fernandez CA, Klagsbrun M (1997) Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site.J Biol Chem272: 31730–31737

    Article  PubMed  CAS  Google Scholar 

  11. McGeehan GM, Becherer JD, Bast RC, Boyer CM, Champion B, Connolly KM, Conway JG, Furdon P, Karp S, Kidao S et al (1994) Regulation of tumour necrosis factor-alpha by a metalloproteinase inhibitor.Nature370: 558–561

    Article  PubMed  CAS  Google Scholar 

  12. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis.Genes Dev14: 163–176

    PubMed  Google Scholar 

  13. McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3.Science289: 1202–1206

    Article  PubMed  CAS  Google Scholar 

  14. Parks WC, Shapiro SD (2001) Matrix metalloproteinases in lung biology.Respir Res2: 10–19

    Article  PubMed  CAS  Google Scholar 

  15. Malik N, Greenfield BW, Wahl AF, Kiener PA (1996) Activation of human monocytes through CD40 induces matrix metalloproteinases.J Immunol156: 3952–3960

    PubMed  CAS  Google Scholar 

  16. Schonbeck U, Mach F, Sukhova GK, Murphy C, Bonnefoy JY, Fabunmi RP, Libby P (1997) Regulation of matrix metalloproteinase expression in human vascular smooth muscle cells by T lymphocytes.Circ Res81: 448–454

    Article  PubMed  CAS  Google Scholar 

  17. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zenner JL, Crumbley J (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure.Circulation102: 1944–1949

    Article  PubMed  CAS  Google Scholar 

  18. Wassenaar A, Verschoor T, Kievits F, Den Hartog MT, Kapsenberg ML (1999) CD40 engagement modulates the production of matrix metalloproteinases by gingival fibroblasts.Clin Exp Immunol115: 161–167

    Article  PubMed  CAS  Google Scholar 

  19. Mauviel A (1993) Cytokine regulation of metalloproteinase gene expression.J Cell Biochem53: 288–295

    Article  PubMed  CAS  Google Scholar 

  20. Makela M, Salo T, Larjava H (1998) MMP-9 from TNF-alpha stimulated keratinocytes binds to cell membranes and Type I collagen: A cause for extended matrix degradation in inflammation.Biochem Biophys Res Commun253: 325–335

    Article  PubMed  CAS  Google Scholar 

  21. Nagase H (1997) Activation mechanisms of matrix metalloproteinases.Biol Chem378: 151–160

    PubMed  CAS  Google Scholar 

  22. Murphy G, Willenbrock F, Crabbe T, O’Shea M, Ward R, Atkinson S, O’Connell J, Docherty A (1994) Regulation of matrix metalloproteinase activity.Ann NY Acad Sci732: 31–41

    Article  PubMed  CAS  Google Scholar 

  23. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E, Seiki M (1994) A matrix metalloproteinase expressed on the surface of invasive tumour cells.Nature370: 61–65

    Article  PubMed  CAS  Google Scholar 

  24. Sato H, Takino T, Kinoshita T, Imai K, Okada Y, Stetler Stevenson WG, Seiki M (1996) Cell surface binding and activation of gelatinase A induced by expression of membranetype-1 -matrix metalloproteinase (MT1-MMP).FEBS Letts385: 238–240

    Article  CAS  Google Scholar 

  25. Knauper V, Cowell S, Smith B, Lopez-Otin C, O’Shea M, Morris H, Zardi L, Murphy G (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specifity, and tissue inhibitor of metalloproteinase interaction. JBiol Chem272: 7608–7616

    Article  PubMed  CAS  Google Scholar 

  26. Pei D, Weiss SJ (1995) Furin-dependent intracellular activation of the human stromelysin-3 zymogen. Nature 375: 244–247

    Article  PubMed  CAS  Google Scholar 

  27. Sato H, Kinoshita T, Takino T, Nakayama K, Seiki M (1996) Activation of a recombinant membrane typel-matrix metalloproteinase (MT-MMP) by furin and its interaction with tissue inhibitor of metalloproteinases (TIMP)-2.FEBS Letts393: 101–104

    Article  CAS  Google Scholar 

  28. Hayakawa T, Yamashita K, Ohuchi E, Shinagawa A (1994) Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2).J Cell Sci107: 2373–2379

    PubMed  CAS  Google Scholar 

  29. Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K (1992) Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum.FEBS Letts298: 29–32

    Article  CAS  Google Scholar 

  30. Thorgeirsson UP, Yoshiji H, Sinha CC, Gomez DE (1996) Breast cancer, tumor neovas-culature and the effect of tissue inhibitor of metalloproteinases-1 (TIMP-1) on angiogenesis.In Vivo 10:137–144

    PubMed  CAS  Google Scholar 

  31. Fata JE, Leco KJ, Voura EB, Yu HY, Waterhouse P, Murphy G, Moorehead RA, Khokha R (2001) Accelerated apoptosis in the Timp-3-deficient mammary gland.J Clin Invest108: 831–841

    PubMed  CAS  Google Scholar 

  32. Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, Sheng S, Alexander P, Sang QA, Shi YE (1997) Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4).J Biol Chem272: 20479–20483

    Article  PubMed  CAS  Google Scholar 

  33. Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4.J Biol Chem271: 30375–30380

    Article  PubMed  CAS  Google Scholar 

  34. Montfort I, Perez-Tamayo R (1975) The distribution of collagenase in normal rat tissues.J Histochem Cytochem23: 910–920

    Article  PubMed  CAS  Google Scholar 

  35. Tyagi SC, Matsubara L, Weber KT (1993) Direct extraction and estimation of collagenase(s) activity by zymography in microquantities of rat myocardium and uterus.Clin Biochem26: 191–198

    Article  PubMed  CAS  Google Scholar 

  36. Coker MS, Thomas CV, Doscher MA (1997) Matrix metalloproteinase expression and activity in adult ventricular myocytes: influence of basement membrane adhesion.Circulation96: I-689

    Google Scholar 

  37. Tyagi SC, Kumar S, Voelker DJ, Reddy HK, Janicki JS, Curtis JJ (1996) Differential gene expression of extracellular matrix components in dilated cardiomyopathy.J Cell Biochem63: 185–198

    Article  PubMed  CAS  Google Scholar 

  38. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure.Circ Res82: 482–495

    Article  PubMed  CAS  Google Scholar 

  39. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ, Spinale FG (1998) Increased matrix metalloproteinase activity and selective up-regulation in LV myocardium from patients with end-stage dilated cardiomyopathy.Circulation 97:1708–1715

    Article  PubMed  CAS  Google Scholar 

  40. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart.Circulation98: 1728–1734

    Article  PubMed  CAS  Google Scholar 

  41. Coker ML, Thomas CV, Clair MJ, Hendrick JW, Krombach RS, Galis ZS, Spinale FG (1998) Myocardial matrix metalloproteinase activity and abundance with congestive heart failure.Am J Physiol43: H1516–H1523

    Google Scholar 

  42. Tyagi SC, Kumar SG, Haas SJ, Reddy HK, Voelker DJ, Hayden MR, Demmy TL, Schmaltz RA, Curtis JJ (1996) Post-transcriptional regulation of extracellular regulation of extracellular matrix metalloproteinase in human heart end-stage failure secondary to ischemic cardiomyopathy.J Mol Cell Cardiol28: 1415–1428

    Article  CAS  Google Scholar 

  43. Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT (1994) Regulation of collagen degradation in the rat myocardium after infarction.J Mol Cell Cardiol27: 1281–1292

    Article  Google Scholar 

  44. Herzog E, Gu A, Kohmoto T, Burkhoff D, Hochman JS (1998) Early activation of met-alloproteinases after experimental myocardial infarction occurs in infarct and non-infarct zones.Cardiovasc Pathol7: 307–312

    Article  CAS  Google Scholar 

  45. Carlyle WC, Jacobson AW, Judd DL, Tian B, Chu C, Hauer KM, Hartman MM, McDonald KM (1997) Delayed reperfusion alters matrix metalloproteinase activity and fibronectin mRNA expression in the infarct zone of the ligated rat heart.J Mol Cell Cardiol29: 2451–2463

    Article  PubMed  CAS  Google Scholar 

  46. Sato S, Ashraf M, Millard RW, Fujiwara H, Schwartz A (1983) Connective tissue changes in early ischemia of porcine myocardium: An ultrastructural study.J Mol Cell Cardiol15: 261–275

    Article  PubMed  CAS  Google Scholar 

  47. Danielsen CC, Wiggers H, Andersen HR (1998) Increased amounts of collagenase and gelatinase in porcine myocardium following ischemia and reperfusion.J Mol Cell Cardiol30: 1431–1442

    Article  PubMed  CAS  Google Scholar 

  48. Peterson JT, Li H, Dillon L, Bryant JW (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat.Cardiovasc Res46: 307–315

    Article  PubMed  CAS  Google Scholar 

  49. Tyagi SC, Campbell SE, Reddy HK, Tjahja E, Voelker DJ (1996) Matrix metalloproteinase activity expression in infarcted, noninfarcted and dilated cardiomyopathic human hearts.Mol Cell Biochem155: 13–21

    Article  PubMed  CAS  Google Scholar 

  50. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice.Circulation99: 3063–3070

    Article  PubMed  CAS  Google Scholar 

  51. Creemers EEJM, Cleutjens JPM, Smits JFM, Daemen MJAP (1999) Inhibition of matrix metalloproteinase (MMP) activity in mice reduces LV remodeling and depresses cardiac function after myocardial infarction.Circulation100: I-250

    Google Scholar 

  52. Lindsey ML, Gannon J, Aikawa M, Schoen FJ, Rabkin E, Lopresti-Morrow L, Crawford J, Black S, Libby P, Mitchell PG et al (2002) Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction.Circulation105: 753–758

    Article  PubMed  CAS  Google Scholar 

  53. Peterson JT, Hallak H, Johnson L, Li H, O’Brien PM, Sliskovic DR, Bocan TMA, Coker ML, Etoh T, Spinale FG (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure.Circulation103: 2303–2309

    Article  PubMed  CAS  Google Scholar 

  54. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT et al (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function.Circ Res85: 364–376

    Article  PubMed  CAS  Google Scholar 

  55. Bendeck MP, Irvin C, Reidy MA (1996) Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury.Circ Res78: 38–43

    Article  PubMed  CAS  Google Scholar 

  56. Strauss BH, Robinson R, Batchelor WB, Chisholm RJ, Ravi G, Natarajan MK, Logan RA, Mehta SR, Levy DE, Ezrin AM, et al. (1996)In vivocollagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases.Circ Res79: 541–550

    Article  PubMed  CAS  Google Scholar 

  57. Schonbeck U, Mach F, Libby P (1998) Generation of biologically active IL-1 beta by matrix metalloproteinases: A novel caspase-1-independent pathway of IL-1 beta processing.J Immunol161: 3340–3346

    PubMed  CAS  Google Scholar 

  58. Narayanan AS, Page RC, Swanson J (1989) Collagen synthesis by human fibroblasts. Regulation by transforming growth factor-beta in the presence of other inflammatory mediators.Biochem J260: 463–469

    PubMed  CAS  Google Scholar 

  59. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JPM, Shipley M, Angellilo A et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevent cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure.Nat Med10: 1135–1142

    Google Scholar 

  60. Przyklenk K, Connelly CM, McLaughlin RJ, Kloner RA, Apstein CS (1987) Effect of myocyte necrosis on strenght, strain, and stiffness of isolated myocardial strips. AmHeart J114: 1349–1359

    Article  PubMed  CAS  Google Scholar 

  61. Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction.J Clin Invest106: 55–62

    Article  PubMed  CAS  Google Scholar 

  62. Lee RT (2001) Matrix metalloproteinase inhibition and the prevention of heart failure.Trends Cardiovasc Med 11:202–205

    Article  PubMed  CAS  Google Scholar 

  63. Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D’Armiento J (2000) Disruption of the myocardial extracellular matrix leads to cardiac dysfunction.J Clin Invest106: 857–866

    Article  PubMed  CAS  Google Scholar 

  64. Roten L, Nemoto S, Simsic J, Coker ML, Rao V, Baicu S, Defreyte G, Soloway PJ, Zile MR, Spinale FG (2000) Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice.J Mol Cell Cardiol32: 109–120

    Article  PubMed  CAS  Google Scholar 

  65. Ye S (2000) Polymorphism in matrix metalloproteinase gene promotors: Implication in regulation of gene expression and susceptibility of various diseases.Matrix Biol19: 623–629

    Article  PubMed  CAS  Google Scholar 

  66. Zhang B, Ye S, Herrmann SM, Eriksson P, de Maat M, Evans A, Arveiler D, Luc G, Cambien F, Hamsten A et al (1999) Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis.Circulation99: 1788

    Article  PubMed  CAS  Google Scholar 

  67. Jormsjo S, Whatling C, Walter DH, Zeiher AM, Hamsten A, Eriksson P (2001) Allele-specific regulation of matrix metalloproteinase-7 promoter activity is associated with coronary artery luminal dimensions among hypercholesterolemic patients.Arterioscler Thromb Vasc Biol21: 1834–1839

    Article  PubMed  CAS  Google Scholar 

  68. Hirohata S, Kusachi S, Murakami M, Murakami T, Sano I, Watanabe T, Komatsubara I, Kondo J, Tsuji T (1997) Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after succesful reperfusion of myocardial infarction.Heart78: 278–284

    PubMed  CAS  Google Scholar 

  69. Kai H, Ikeda H, Yasukawa H, Kai M, Seki Y, Kuwahara F, Ueno T, Sugi K, Imaizumi T (1998) Peripheral blood levels of matrix metalloproteinase-2 and -9 are elevated in patients with acute coronary syndromes.JAmColl Cardiol32: 368–372

    Article  CAS  Google Scholar 

  70. Carmeliet P, Moons L, Lijnen R, Baes M, Lemaitre V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F et al (1997) Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation.Nat Gen17: 439–444

    Article  CAS  Google Scholar 

  71. Creemers EEJM, Cleutjens J, Smits J, Heymans S, Moons L, Collen D, Daemen M, Carmeliet P (2000) Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. AmJ Pathol156: 1865–1873

    Article  PubMed  CAS  Google Scholar 

  72. Keski-Oja J, Lyons RM, Moses HL (1987) Inactive secreted forms of transforming growth factor-beta: activation by proteolysis.J Cell Biochem11a: 60

    Google Scholar 

  73. Lijnen HR, Collen D (1989) Congenital and acquired deficiencies of components of the fibrinolytic system and their relation to bleeding and thrombosis.Fibrinolysis3: 67–77

    CAS  Google Scholar 

  74. Feldman MD, Erikson JM, Mao Y, Korcarz CE, Lang RM, Freeman GL (2000) Validation of a mouse conductance system to determine LV volume: Comparison to echocardiography and crystals. AmJ Physiol Heart Circ Physiol279: H1698–H1707

    PubMed  CAS  Google Scholar 

  75. Drummond AH, Beckett P, Brown PD, Bone EA, Davidson AH, Galloway WA, Gearing AJH, Huxley P, Laber L, McCourt M et al (1999) Preclinical and clinical studies of MMP inhbitors in cancer.Ann NY Acad Sci878: 228–235

    Article  PubMed  CAS  Google Scholar 

  76. Vaalamo M, Mattila L, Johansson N, Kariniemi AL, Karjalainen-Lindsberg ML, Kahari VM, Saarialho-Kere U (1997) Distinct populations of stromal cells express collagenase3 (MMP-13) and collagenase-1 (MMP-1) in chronic ulcers but not in normally healing wounds.J Invest Dermatol109: 96–101

    Article  PubMed  CAS  Google Scholar 

  77. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, Heikkila P, Kantor C, Gahmberg CG, Salo T, Konttinen YT et al (1999) Tumor targeting with a selective gelatinase inhibitor.Nature17: 768–774

    Article  CAS  Google Scholar 

  78. Carney DE, Lutz CJ, Picone AL, Gatto LA, Ramamurthy NS, Golub LM, Simon SR, Searles B, Paskanik A, Snyder K et al (1999) Matrix metalloproteinase inhibitor prevents acute lung injury after cardiopulmonary bypass.Circulation100: 400–406

    Article  PubMed  CAS  Google Scholar 

  79. Brown PD (1998) Synthetic inhibitors of matrix metalloproteinases. In: Parks WC, Mecham RP (eds):Matrix metalloproteinases.Academic Press, San Diego,CA, pp 243–261

    Chapter  Google Scholar 

  80. Jugdutt BI, Khan MI (1992) Impact of increased infarct transmurality on remodeling and function during healing after anterior myocardial infarction in the dog.Can J Physiol Pharmacol70: 949–958

    Article  PubMed  CAS  Google Scholar 

  81. Weisman HF, Bush DE, Mannisi JA, Weisfeldt ML, Healy B (1988) Cellular mechanisms of myocardial expansion.Circulation78: 186–201

    Article  PubMed  CAS  Google Scholar 

  82. Whittaker P, Boughner DR, Kloner RA (1991) Role of collagen in acute myocardial infarct expansion.Circulation84: 2123–2134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Creemers, E.E.J.M., Cleutjens, J.P.M., Daemen, M.J.A.P., Smits, J.F.M. (2003). The role of matrix metalloproteinases in LV remodeling following myocardial infarction. In: Feuerstein, G.Z., Libby, P., Mann, D.L. (eds) Inflammation and Cardiac Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8047-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8047-3_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9419-7

  • Online ISBN: 978-3-0348-8047-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics