Skip to main content

Inflammation and coronary artery disease

  • Chapter
  • 121 Accesses

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

The complications of atherosclerosis are associated with a high incidence of morbidity and mortality in Western societies [1]. Coronary atherosclerosis is now considered a complex inflammatory process in response to the retention of specific atherogenic lipoproteins in the arterial wall. In addition to the localized immune response, there is emerging evidence that systemic inflammatory markers may have a diagnostic value in predicting acute cardiac events. Among the many risk factors for atherosclerosis, hyperlipidemia is thought the most influential on inflammatory processes along with specific immunological factors. Recent animal studies suggest that the induction of atherosclerosis is closely linked to lipoprotein abnormalities since genetic derangements of systemic or localized immunity alone do not initiate the disease. Although genetically engineered animals have furthered the understanding of the role of inflammation in atherosclerosis, the relevance of these findings to disease progression in humans are not as clear. This chapter will discuss the role of inflammation in the evolution of varying coronary lesions, particularly those associated with acute coronary syndromes. In addition, potential systemic factors that may influence inflammation in the vessel wall in relation to plaque instability will also be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2002 Heart and Stroke Statistical Update. American Heart Association, Dallas, Texas: American Heart Association, 2001

    Google Scholar 

  2. Stary HC, Chandler AB, Glagov S, Guyton JR, Insull W Jr, Rosenfeld ME, Schaffer SA, Schwartz CJ, Wagner WD, Wissler RW (1994) A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on arteriosclerosis, American Heart Association. Arterioscler Thromb 14: 840–856

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz SM, deBlois D, O’Brien ER (1995) The intima. Soil for atherosclerosis and restenosis. Circ Res 77: 445–465

    Article  PubMed  CAS  Google Scholar 

  4. McCaffrey TA, Du B, Consigli S, Szabo P, Bray PJ, Hartner L, Weksler BB, Sanborn TA, Bergman G, Bush HL Jr (1997) Genomic instability in the Type II TGF-betal receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 100: 2182–2188

    Article  PubMed  CAS  Google Scholar 

  5. Chatterjee SB, Dey S, Shi WY, Thomas K, Hutchins GM (1997) Accumulation of glycosphingolipids in human atherosclerotic plaque and unaffected aorta tissues. Glycobiology 7: 57–65

    Article  PubMed  CAS  Google Scholar 

  6. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20: 1262–1275

    Article  PubMed  CAS  Google Scholar 

  7. Velican D, Velican C (1980) Atherosclerotic involvement of the coronary arteries of adolescents and young adults. Atherosclerosis 36: 449–460

    Article  PubMed  CAS  Google Scholar 

  8. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP 3rd, Herderick EE, Cornhill JF (1999) Prevalence and extent of atherosclerosis in adolescents and young adults: Implications for prevention from the pathobiological determinants of atherosclerosis in youth study. Jama 281: 727–735

    Article  PubMed  CAS  Google Scholar 

  9. De Caterina R, Liao JK, Libby P (2000) Fatty acid modulation of endothelial activation. Am J Clin Nutr 71: 213S–223S

    Google Scholar 

  10. Collins RG, Velji R, Guevara NV, Hicks MJ, Chan L, Beaudet AL (2000) P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. J Exp Med 191: 189–194

    Article  PubMed  CAS  Google Scholar 

  11. Methia N, Andre P, Denis CV, Economopoulos M, Wagner DD (2001) Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood 98: 1424–1428

    Article  PubMed  CAS  Google Scholar 

  12. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P (1993) Inducible expression of vascular cell adhesion molecule-1 by vascular smooth muscle cells in vitro and within rabbit atheroma. Am J Pathol 143: 1551–1559

    PubMed  CAS  Google Scholar 

  13. Richardson M, Hadcock SJ, DeReske M, Cybulsky MI (1994) Increased expression in vivo of VCAM-1 and E-selectin by the aortic endothelium of normolipemic and hyperlipemic diabetic rabbits. Arterioscler Thromb 14: 760–769

    Article  PubMed  CAS  Google Scholar 

  14. Cybulsky MI, Iiyama K, Li H, Zhu S, Chen M, Iiyama M, Davis V, Gutierrez-Ramos JC, Connelly PW, Milstone DS (2001) A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J Clin Invest 107: 1255–1262

    Article  PubMed  CAS  Google Scholar 

  15. Chan BM, Elices MJ, Murphy E, Hemler ME (1992) Adhesion to vascular cell adhesion molecule 1 and fibronectin. Comparison of alpha 4 beta 1 (VLA-4) and alpha 4 beta 7 on the human B cell line JY. J Biol Chem 267: 8366–8370

    CAS  Google Scholar 

  16. Patel SS, Thiagarajan R, Willerson JT, Yeh ET (1998) Inhibition of alpha4 integrin and ICAM-1 markedly attenuate macrophage homing to atherosclerotic plaques in ApoEdeficient mice. Circulation 97: 75–81

    Article  PubMed  CAS  Google Scholar 

  17. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa-B and cytokine-inducible enhancers. Faseb J 9: 899–909

    PubMed  CAS  Google Scholar 

  18. Barnes PJ, Karin M (1997) Nuclear factor-kappa-B: A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071

    Article  PubMed  CAS  Google Scholar 

  19. Wilson SH, Best PJ, Edwards WD, Holmes DR Jr, Carlson PJ, Celermajer DS, Lerman A (2002) Nuclear factor-kappa-B immunoreactivity is present in human coronary plaque and enhanced in patients with unstable angina pectoris. Atherosclerosis 160: 147–153

    Article  PubMed  CAS  Google Scholar 

  20. Bourcier T, Sukhova G, Libby P (1997) The nuclear factor kappa-B signaling pathway participates in dysregulation of vascular smooth muscle cells in vitro and in human atherosclerosis. J Biol Chem 272: 15817–15824

    Article  PubMed  CAS  Google Scholar 

  21. Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL (2002) Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: Role of LOX-1. J Pharmacol Exp Ther 302: 601–605

    Article  PubMed  CAS  Google Scholar 

  22. Cyrus T, Sung S, Zhao L, Funk CD, Tang S, Pratico D (2002) Effect of low-dose aspirin on vascular inflammation, plaque stability, and atherogenesis in low-density lipoprotein receptor-deficient mice. Circulation 106: 1282–1287

    Article  PubMed  CAS  Google Scholar 

  23. Baeuerle PA, Baltimore D (1989) A 65-kappa-D subunit of active NF-kappa-B is required for inhibition of NF-kappa-B by I kappa-B. Genes Dev 3: 1689–1698

    Article  PubMed  CAS  Google Scholar 

  24. Oitzinger W, Hofer-Warbinek R, Schmid JA, Koshelnick Y, Binder BR, de Martin R (2001) Adenovirus-mediated expression of a mutant I kappa-B kinase 2 inhibits the response of endothelial cells to inflammatory stimuli. Blood 97: 1611–1617

    Article  PubMed  CAS  Google Scholar 

  25. Lee R, Collins T (2001) Nuclear factor-kappa-B and cell survival: IAPs call for support. Circ Res 88: 262–264

    Article  PubMed  CAS  Google Scholar 

  26. Wang J, Wang S, Lu Y, Weng Y, Gown AM (1994) GM-CSF and M-CSF expression is associated with macrophage proliferation in progressing and regressing rabbit atheromatous lesions. Exp Mol Pathol 61: 109–118

    Article  PubMed  CAS  Google Scholar 

  27. Qiao JH, Tripathi J, Mishra NK, Cai Y, Tripathi S, Wang XP, Imes S, Fishbein MC, Clinton SK, Libby P et al (1997) Role of macrophage colony-stimulating factor in atherosclerosis: Studies of osteopetrotic mice. Am J Pathol 150: 1687–1699

    PubMed  CAS  Google Scholar 

  28. Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M, Wang XP, Loussararian A, Clinton S, Libby P et al (1998) Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest 101: 2702–2710

    Article  PubMed  CAS  Google Scholar 

  29. Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M (1995) Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci USA 92: 8264–8268

    Article  CAS  Google Scholar 

  30. Evanko SP, Raines EW, Ross R, Gold LI, Wight TN (1998) Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am J Pathol 152: 533–546

    PubMed  CAS  Google Scholar 

  31. Chang MY, Olin KL, Tsoi C, Wight TN, Chait A (1998) Human monocyte-derived macrophages secrete two forms of proteoglycan-macrophage colony-stimulating factor that differ in their ability to bind low density lipoproteins. J Biol Chem 273: 15985–15992

    Article  PubMed  CAS  Google Scholar 

  32. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, Boren J (2002) Sub-endothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417: 750–754

    Article  PubMed  CAS  Google Scholar 

  33. Fukuchi M, Watanabe J, Kumagai K, Baba S, Shinozaki T, Miura M, Kagaya Y, Shirato K (2002) Normal and oxidized low density lipoproteins accumulate deep in physiologically thickened intima of human coronary arteries. Lab Invest 82: 1437–1447

    PubMed  CAS  Google Scholar 

  34. Kockx MM, De Meyer GR, Muhring J, Jacob W, Bult H, Herman AG (1998) Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97: 2307–2315

    Article  PubMed  CAS  Google Scholar 

  35. Buono C, Come CE, Witztum JL, Maguire GF, Connelly PW, Carroll M, Lichtman AH (2002) Influence of C3 deficiency on atherosclerosis. Circulation 105: 3025–3031

    Article  PubMed  CAS  Google Scholar 

  36. Borkowski P, Robinson MJ, Kusiak JW, Borkowski A, Brathwaite C, Mergner WJ (1995) Studies on TGF-beta 1 gene expression in the intima of the human aorta in regions with high and low probability of developing atherosclerotic lesions. Mod Pathol 8: 478–482

    PubMed  CAS  Google Scholar 

  37. Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R, Fradelizi D, Tedgui A (2001) Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 89: 930–934

    Article  PubMed  CAS  Google Scholar 

  38. Lutgens E, Gijbels M, Smook M, Heeringa P, Gotwals P, Koteliansky VE, Daemen MJ (2002) Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 22: 975–982

    Article  PubMed  CAS  Google Scholar 

  39. Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88: 877–887

    Article  PubMed  CAS  Google Scholar 

  40. Wang P, Wu P, Siegel MI, Egan RW, Billah MM (1995) Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa-B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem 270: 9558–9563

    Article  PubMed  CAS  Google Scholar 

  41. O’Sullivan BJ, Thomas R (2002) CD40 ligation conditions dendritic cell antigen-presenting function through sustained activation of NF-kappa-B. J Immunol 168: 5491–5498

    PubMed  Google Scholar 

  42. Mallat Z, Heymes C, Ohan J, Faggin E, Leseche G, Tedgui A (1999) Expression of interleukin-10 in advanced human atherosclerotic plaques: relation to inducible nitric oxide synthase expression and cell death. Arterioscler Thromb Vasc Biol 19: 611–616

    Article  PubMed  CAS  Google Scholar 

  43. Smith DA, Irving SD, Sheldon J, Cole D, Kaski JC (2001) Serum levels of the antiinflammatory cytokine interleukin-10 are decreased in patients with unstable angina. Circulation 104: 746–749

    Article  PubMed  CAS  Google Scholar 

  44. Mallat Z, Besnard S, Duriez M, Deleuze V, Emmanuel F, Bureau MF, Soubrier F, Esposito B, Duez H, Fievet C et al (1999) Protective role of interleukin-10 in atherosclerosis. Circ Res 85: e17–24

    Article  PubMed  CAS  Google Scholar 

  45. Pinderski Oslund LJ, Hedrick CC, Olvera T, Hagenbaugh A, Territo M, Berliner JA, Fyfe AI (1999) Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arterioscler Thromb Vasc Biol 19: 2847–2853

    Article  PubMed  CAS  Google Scholar 

  46. Pinderski LJ, Fischbein MP, Subbanagounder G, Fishbein MC, Kubo N, Cheroutre H, Curtiss LK, Berliner JA, Boisvert WA (2002) Over-expression of interleukin-10 by activated T lymphocytes inhibits atherosclerosis in LDL receptor-deficient mice by altering lymphocyte and macrophage phenotypes. Circ Res 90: 1064–1071

    Article  PubMed  CAS  Google Scholar 

  47. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15: 1512–1531

    Article  PubMed  CAS  Google Scholar 

  48. Colles SM, Maxson JM, Carlson SG, Chisolm GM (2001) Oxidized LDL-induced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc Med 11: 131–138

    Article  PubMed  CAS  Google Scholar 

  49. Bennett MR, Evan GI, Schwartz SM (1995) Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J Clin Invest 95: 2266–2274

    Article  PubMed  CAS  Google Scholar 

  50. Seshiah PN, Kereiakes DJ, Vasudevan SS, Lopes N, Su BY, Flavahan NA, GoldschmidtClermont PJ (2002) Activated monocytes induce smooth muscle cell death: Role of macrophage colony-stimulating factor and cell contact. Circulation 105: 174–180

    Article  PubMed  CAS  Google Scholar 

  51. Vivers S, Dransfield I, Hart SP (2002) Role of macrophage CD44 in the disposal of inflammatory cell corpses. Clin Sci (Lond) 103: 441–449

    Article  CAS  Google Scholar 

  52. Schaub FJ, Han DK, Liles WC, Adams LD, Coats SA, Ramachandran RK, Seifert RA, Schwartz SM, Bowen-Pope DF (2000) Fas/FADD-mediated activation of a specific program of inflammatory gene expression in vascular smooth muscle cells. Nat Med 6: 790–796

    Article  PubMed  CAS  Google Scholar 

  53. Khelef N, Buton X, Beatini N, Wang H, Meiner V, Chang TY, Farese RV Jr., Maxfield FR, Tabas I (1998) Immunolocalization of acyl-coenzyme A:cholesterol 0-acyltransferase in macrophages. J Biol Chem 273: 11218–11224

    Article  PubMed  CAS  Google Scholar 

  54. Yao PM, Tabas I (2001) Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 276: 42468–42476

    Article  PubMed  CAS  Google Scholar 

  55. Tabas I (2001) p53 and atherosclerosis. Circ Res 88: 747–749

    Article  PubMed  CAS  Google Scholar 

  56. van Vlijmen BJ, Gerritsen G, Franken AL, Boesten LS, Kockx MM, Gijbels MJ, Vierboom MP, van Eck M, van De Water B, van Berkel TJ et al (2001) Macrophage p53 deficiency leads to enhanced atherosclerosis in APOE“3-Leiden transgenic mice. Circ Res 88: 780–786

    Article  PubMed  Google Scholar 

  57. von der Thusen JH, van Vlijmen BJ, Hoeben RC, Kockx MM, Havekes LM, van Berkel TJ, Biessen EA (2002) Induction of atherosclerotic plaque rupture in apolipoprotein E—/— mice after adenovirus-mediated transfer of p531. Circulation 105: 2064–2070

    Article  PubMed  Google Scholar 

  58. Ihling C, Menzel G, Wellens E, Monting JS, Schaefer HE, Zeiher AM (1997) Topographical association between the cyclin-dependent kinases inhibitor P21, p53 accumulation, and cellular proliferation in human atherosclerotic tissue. Arterioscler Thromb Vasc Biol 17: 2218–2224

    Article  PubMed  CAS  Google Scholar 

  59. Little WC (1990) Angiographic assessment of the culprit coronary artery lesion before acute myocardial infarction. Am J Cardiol 66: 44G–47G

    Article  PubMed  CAS  Google Scholar 

  60. Muller JE, Stone PH, Turi ZG, Rutherford JD, Czeisler CA, Parker C, Poole WK, Passamani E, Roberts R, Robertson T et al (1985) Circadian variation in the frequency of onset of acute myocardial infarction. N Engl J Med 313: 1315–1322

    Article  PubMed  CAS  Google Scholar 

  61. Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79: 733–743

    Article  PubMed  CAS  Google Scholar 

  62. Leor J, Poole WK, Kloner RA (1996) Sudden cardiac death triggered by an earthquake. N Engl J Med 334: 413–419

    Article  PubMed  CAS  Google Scholar 

  63. Libby P, Geng YJ, Aikawa M, Schoenbeck U, Mach F, Clinton SK, Sukhova GK, Lee RT (1996) Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 7: 330–335

    Article  PubMed  CAS  Google Scholar 

  64. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336: 1276–1282

    Article  PubMed  CAS  Google Scholar 

  65. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT (1994) Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb 14: 230–234

    Article  PubMed  CAS  Google Scholar 

  66. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P (2001) Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 158: 879–891

    Article  PubMed  CAS  Google Scholar 

  67. Lutgens E, de Muinck ED, Kitslaar PJ, Tordoir JH, Wellens HJ, Daemen MJ (1999) Biphasic pattern of cell turnover characterizes the progression from fatty streaks to ruptured human atherosclerotic plaques. Cardiovasc Res 41: 473–479

    Article  PubMed  CAS  Google Scholar 

  68. Lessner SM, Prado HL, Waller EK, Galis ZS (2002) Atherosclerotic lesions grow through recruitment and proliferation of circulating monocytes in a murine model. Am J Pathol 160: 2145–2155

    Article  PubMed  CAS  Google Scholar 

  69. Libby P, Aikawa M (2002) Stabilization of atherosclerotic plaques: New mechanisms and clinical targets. Nat Med 8: 1257–1262

    Article  PubMed  CAS  Google Scholar 

  70. Ross R (1999) Atherosclerosis: An inflammatory disease. N Engl J Med 340: 115–126

    Article  PubMed  CAS  Google Scholar 

  71. Galis ZS, Sukhova GK, Libby P (1995) Microscopic localization of active proteases by in situ zymography: Detection of matrix metalloproteinase activity in vascular tissue. Faseb J 9: 974–980

    PubMed  CAS  Google Scholar 

  72. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13: 35–48

    Article  PubMed  CAS  Google Scholar 

  73. Lemaitre V, O’Byrne TK, Borczuk AC, Okada Y, Tall AR, D’Armiento J (2001) ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis. J Clin Invest 107: 1227–1234

    Article  PubMed  CAS  Google Scholar 

  74. Schonbeck U, Mach F, Sukhova GK, Atkinson E, Levesque E, Herman M, Graber P, Basset P, Libby P (1999) Expression of stromelysin-3 in atherosclerotic lesions: Regulation via CD40–CD40 ligand signaling in vitro and in vivo. J Exp Med 189: 843–853

    Article  PubMed  CAS  Google Scholar 

  75. Mach F, Schonbeck U, Sukhova GK, Bourcier T, Bonnefoy JY, Pober JS, Libby P (1997) Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages: Implications for CD40—CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA 94: 1931–1936

    Article  PubMed  CAS  Google Scholar 

  76. Mach F, Schonbeck U, Bonnefoy JY, Pober JS, Libby P (1997) Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: Induction of collagenase, stromelysin, and tissue factor. Circulation 96: 396–399

    Article  PubMed  CAS  Google Scholar 

  77. Mach F, Schonbeck U, Sukhova GK, Atkinson E, Libby P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394: 200–203

    Article  PubMed  CAS  Google Scholar 

  78. Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, Virmani R (2002) Differential accumulation of proteoglycans and hyaluronan in culprit lesions: Insights into plaque erosion. Arterioscler Thromb Vasc Biol 22: 1642–1648

    Article  PubMed  CAS  Google Scholar 

  79. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J (1993) Risk of thrombosis in human atherosclerotic plaques: Role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 69: 377–381

    Article  PubMed  CAS  Google Scholar 

  80. Lendon CL, Davies MJ, Born GV, Richardson PD (1991) Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87: 87–90

    Article  PubMed  CAS  Google Scholar 

  81. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, Smialek J, Virmani R (2000) Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 157: 1259–1268

    Article  PubMed  CAS  Google Scholar 

  82. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P (1996) Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol 16: 19–27

    Article  PubMed  CAS  Google Scholar 

  83. Geng YJ, Henderson LE, Levesque EB, Muszynski M, Libby P (1997) Fas is expressed in human atherosclerotic intima and promotes apoptosis of cytokine-primed human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 17: 2200–2208

    Article  PubMed  CAS  Google Scholar 

  84. Okura Y, Brink M, Zahid AA, Anwar A, Delafontaine P (2001) Decreased expression of insulin-like growth factor-1 and apoptosis of vascular smooth muscle cells in human atherosclerotic plaque. J Mol Cell Cardiol 33: 1777–1789

    Article  PubMed  CAS  Google Scholar 

  85. Geng YJ, Libby P (2002) Progression of atheroma: A struggle between death and procreation. Arterioscler Thromb Vasc Biol 22: 1370–1380

    Article  PubMed  CAS  Google Scholar 

  86. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68: 383–424

    Article  PubMed  CAS  Google Scholar 

  87. Sordet O, Rebe C, Plenchette S, Zermati Y, Hermine O, Vainchenker W, Garrido C, Solary E, Dubrez-Daloz L (2002) Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood 100: 4446–4453

    Article  PubMed  CAS  Google Scholar 

  88. Gerdes N, Sukhova GK, Libby P, Reynolds RS, Young JL, Schonbeck U (2002) Expression of interleukin (IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. J Exp Med 195: 245–257

    Article  PubMed  CAS  Google Scholar 

  89. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104: 1598–1603

    Article  PubMed  CAS  Google Scholar 

  90. Mallat Z, Corbaz A, Scoazec A, Graber P, Alouani S, Esposito B, Humbert Y, Chvatchko Y, Tedgui A (2001) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 89: E41–45

    Article  PubMed  CAS  Google Scholar 

  91. Whitman SC, Ravisankar P, Daugherty A (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E (—I—) mice through release of interferon-gamma. Circ Res 90: E34–38

    Article  PubMed  CAS  Google Scholar 

  92. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407: 770–776

    Article  PubMed  CAS  Google Scholar 

  93. Napoli C, Quehenberger O, De Nigris F, Abete P, Glass CK, Palinski W (2000) Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. Faseb J 14: 1996–2007

    Article  PubMed  CAS  Google Scholar 

  94. Lee T, Chau L (2001) Fas/Fas ligand-mediated death pathway is involved in oxLDLinduced apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 280: C709–718

    PubMed  CAS  Google Scholar 

  95. Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM (2002) Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 106: 927–932

    Article  PubMed  CAS  Google Scholar 

  96. Heinecke JW (1999) Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J Lab Clin Med 133: 321–325

    Article  PubMed  CAS  Google Scholar 

  97. Daugherty A, Dunn JL, Rateri DL, Heinecke JW (1994) Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 94: 437–444

    Article  PubMed  CAS  Google Scholar 

  98. Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276:41279–41287

    Article  PubMed  CAS  Google Scholar 

  99. Halpert I, Sires UI, Roby JD, Potter-Perigo S, Wight TN, Shapiro SD, Welgus HG, Wick-line SA, Parks WC (1996) Matrilysin is expressed by lipid-laden macrophages at sites of potential rupture in atherosclerotic lesions and localizes to areas of versican deposition, a proteoglycan substrate for the enzyme. Proc Natl Acad Sci USA 93: 9748–9753

    Article  PubMed  CAS  Google Scholar 

  100. Podrez EA, Schmitt D, Hoff HF, Hazen SL (1999) Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J Clin Invest 103: 1547–1560

    Article  CAS  Google Scholar 

  101. Eiserich JP, Baldus S, Brennan ML, Ma W, Zhang C, Tousson A, Castro L, Lusis AJ, Nauseef WM, White CR et al (2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296: 2391–2394

    Article  PubMed  CAS  Google Scholar 

  102. Zhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, Topol EJ, Sprecher DL, Hazen SL (2001) Association between myeloperoxidase levels and risk of coronary artery disease. Jama 286: 2136–2142

    Article  PubMed  CAS  Google Scholar 

  103. Buffon A, Biasucci LM, Liuzzo G, D’Onofrio G, Crea F, Maseri A (2002) Widespread coronary inflammation in unstable angina. N Engl J Med 347: 5–12

    Article  PubMed  Google Scholar 

  104. Clowes AW, Berceli SA (2000) Mechanisms of vascular atrophy and fibrous cap disruption. Ann NY Acad Sci 902: 153–161; discussion 161–152

    Article  PubMed  CAS  Google Scholar 

  105. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 1371–1375

    Article  PubMed  CAS  Google Scholar 

  106. Geary RL, Kohler TR, Vergel S, Kirkman TR, Clowes AW (1994) Time course of flow-induced smooth muscle cell proliferation and intimal thickening in endothelialized baboon vascular grafts. Circ Res 74: 14–23

    Article  PubMed  CAS  Google Scholar 

  107. Mattsson EJ, Kohler TR, Vergel SM, Clowes AW (1997) Increased blood flow induces regression of intimal hyperplasia. Arterioscler Thromb Vasc Biol 17: 2245–2249

    Article  PubMed  CAS  Google Scholar 

  108. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R (1998) Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation 97: 2110–2116

    Article  PubMed  CAS  Google Scholar 

  109. Burke AP, Farb A, Liang YH, Smialek J, Virmani R (1996) Effect of hypertension and cardiac hypertrophy on coronary artery morphology in sudden cardiac death. Circulation 94: 3138–3145

    Article  PubMed  CAS  Google Scholar 

  110. Blake GJ, Ridker PM (2002) Inflammatory bio-markers and cardiovascular risk prediction. J Intern Med 252: 283–294

    Article  PubMed  CAS  Google Scholar 

  111. Blake GJ, Ridker PM (2002) C-reactive protein, subclinical atherosclerosis, and risk of cardiovascular events. Arterioscler Thromb Vasc Biol 22: 1512–1513

    Article  PubMed  Google Scholar 

  112. Westhuyzen J, Healy H (2000) Review: Biology and relevance of C-reactive protein in cardiovascular and renal disease. Ann Clin Lab Sci 30: 133–143

    PubMed  CAS  Google Scholar 

  113. Sakkinen P, Abbott RD, Curb JD, Rodriguez BL, Yano K, Tracy RP (2002) C-reactive protein and myocardial infarction. J Clin Epidemiol 55: 445–451

    Article  PubMed  Google Scholar 

  114. Winbeck K, Poppert H, Etgen T, Conrad B, Sander D (2002) Prognostic relevance of early serial C-reactive protein measurements after first ischemic stroke. Stroke 33: 2459–2464

    Article  PubMed  CAS  Google Scholar 

  115. Schillinger M, Exner M, Mlekusch W, Rumpold H, Ahmadi R, Sabeti S, Haumer M, Wagner O, Minar E (2002) Vascular inflammation and percutaneous transluminal angioplasty of the femoropopliteal artery: Association with restenosis. Radiology 225: 21–26

    Article  PubMed  Google Scholar 

  116. Ridker PM (2001) High-sensitivity C-reactive protein: Potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation 103: 1813–1818

    Article  PubMed  CAS  Google Scholar 

  117. Ridker PM, Stampfer MJ, Rifai N (2001) Novel risk factors for systemic atherosclerosis: A comparison of C-reactive protein, fibrinogen, homocysteine, lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. Jama 285: 2481–2485

    Article  PubMed  CAS  Google Scholar 

  118. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105: 1135–1143

    Article  PubMed  CAS  Google Scholar 

  119. Burke AP, Tracy RP, Kolodgie F, Malcom GT, Zieske A, Kutys R, Pestaner J, Smialek J, Virmani R (2002) Elevated C-reactive protein values and atherosclerosis in sudden coronary death: Association with different pathologies. Circulation 105: 2019–2023

    Article  PubMed  CAS  Google Scholar 

  120. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, Virmani R (1996) Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation 93: 1354–1363

    Article  PubMed  CAS  Google Scholar 

  121. Relou IA, Damen CA, van der Schaft DW, Groenewegen G, Griffioen AW (1998) Effect of culture conditions on endothelial cell growth and responsiveness. Tissue Cell 30: 525–530

    Article  PubMed  CAS  Google Scholar 

  122. Koshiishi I, Shizari M, Underhill CB (1994) CD44 can mediate the adhesion of platelets to hyaluronan. Blood 84: 390–396

    PubMed  CAS  Google Scholar 

  123. Clarkson TB, Prichard RW, Morgan TM, Petrick GS, Klein KP (1994) Remodeling of coronary arteries in human and nonhuman primates. Jama 271: 289–294

    Article  PubMed  CAS  Google Scholar 

  124. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM (2000) Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: An intravascular ultrasound study. Circulation 101: 598–603

    Article  PubMed  CAS  Google Scholar 

  125. von Birgelen C, Klinkhart W, Mintz GS, Papatheodorou A, Herrmann J, Baumgart D, Haude M, Wieneke H, Ge J, Erbel R (2001) Plaque distribution and vascular remodeling of ruptured and nonruptured coronary plaques in the same vessel: An intravascular ultrasound study in vivo. J Am Coll Cardiol 37: 1864–1870

    Article  Google Scholar 

  126. Pasterkamp G, Schoneveld AH, van der Wal AC, Haudenschild CC, Clarijs RJ, Becker AE, Hillen B, Borst C (1998) Relation of arterial geometry to luminal narrowing and histologic markers for plaque vulnerability: The remodeling paradox. J Am Coll Cardiol 32: 655–662

    Article  PubMed  CAS  Google Scholar 

  127. Lutgens E, de Muinck ED, Heeneman S, Daemen MJ (2001) Compensatory enlargement and stenosis develop in apoE(—I—) and apoE* 3-Leiden transgenic mice. Arterioscler Thromb Vasc Biol 21: 1359–1365

    Article  PubMed  CAS  Google Scholar 

  128. Burke AP, Kolodgie FD, Farb A, Weber D, Virmani R (2002) Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation 105: 297–303

    Article  PubMed  Google Scholar 

  129. Pyo R, Lee JK, Shipley JM, Curci JA, Mao D, Ziporin SJ, Ennis TL, Shapiro SD, Senior RM, Thompson RW (2000) Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest 105: 1641–1649

    Article  PubMed  CAS  Google Scholar 

  130. Annabi B, Shedid D, Ghosn P, Kenigsberg RL, Desrosiers RR, Bojanowski MW, Beaulieu E, Nassif E, Moumdjian R, Beliveau R (2002) Differential regulation of matrix metalloproteinase activities in abdominal aortic aneurysms. J Vasc Surg 35: 539–546

    Article  PubMed  Google Scholar 

  131. Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW (1998) Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102: 1900–1910

    Article  PubMed  CAS  Google Scholar 

  132. Verhamme P, Quarck R, Hao H, Knaapen M, Dymarkowski S, Bernar H, Van Cleemput J, Janssens S, Vermylen J, Gabbiani G et al (2002) Dietary cholesterol withdrawal reduces vascular inflammation and induces coronary plaque stabilization in miniature pigs. Cardiovasc Res 56: 135

    Article  PubMed  CAS  Google Scholar 

  133. Aikawa M, Rabkin E, Sugiyama S, Voglic SJ, Fukumoto Y, Furukawa Y, Shiomi M, Schoen FJ, Libby P (2001) An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103: 276–283

    Article  CAS  Google Scholar 

  134. Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM (2001) Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering. Circ Res 88: 733–739

    Article  PubMed  CAS  Google Scholar 

  135. Kockx MM, Seye C, De Meyer GR, Knaapen MW (2000) Decreased apoptosis and tissue factor expression after lipid lowering. Circulation 102: E99

    Article  PubMed  CAS  Google Scholar 

  136. Burke AP, Kolodgie FD, Farb A, Weber DK, Malcom GT, Smialek J, Virmani R (2001) Healed plaque ruptures and sudden coronary death: Evidence that subclinical rupture has a role in plaque progression. Circulation 103: 934–940

    Article  PubMed  CAS  Google Scholar 

  137. Crisby M, Nordin-Fredriksson G, Shah PK, Yano J, Zhu J, Nilsson J (2001) Pravastatin treatment increases collagen content and decreases lipid content, inflammation, metalloproteinases, and cell death in human carotid plaques: Implications for plaque stabilization. Circulation 103: 926–933

    Article  PubMed  CAS  Google Scholar 

  138. Tedgui A, Mallat Z (2001) Anti-inflammatory mechanisms in the vascular wall. Circ Res 88: 877–887

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Virmani, R., Kolodgie, F.D., Burke, A.P., Farb, A., Gold, H.K., Finn, A.V. (2003). Inflammation and coronary artery disease. In: Feuerstein, G.Z., Libby, P., Mann, D.L. (eds) Inflammation and Cardiac Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8047-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8047-3_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9419-7

  • Online ISBN: 978-3-0348-8047-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics