Skip to main content

The Role of Complement in Myocardial Inflammation and Reperfusion Injury

  • Chapter
Book cover Inflammation and Cardiac Diseases

Part of the book series: Progress in Inflammation Research ((PIR))

  • 118 Accesses

Abstract

The complement system represents a major physiologic defense mechanism, which in addition has the potential for initiating tissue damage at the initial site of injury, in many cases, being directed towards the vascular endothelium. A major question concerns the role of the complement system as a direct mediator of tissue injury, as well as its ability to promote the inflammatory response associated with myocardial ischemia and/or reperfusion. As a major component of the innate immune system, complement is able to discriminate self from non-self and to bring about the removal of pathogens and non-self antigens by inducing signaling mechanisms that initiate pro-inflammatory, opsonic, phagocytic, and cytolytic actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucchesi BR (1994) Complement, neutrophils and free radicals: Mediators of reperfusion injury. Arzneimittel-Forschung 4: 420–432

    Google Scholar 

  2. Homeister JW, Lucchesi BR (1994) Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol 34: 17–40

    Article  PubMed  CAS  Google Scholar 

  3. Cooper NR (1999) Biology of the complement system. In: Feron DT, Haynes BF, Nathan C (eds): Inflammation,basic principles and clinical correlates. Lippincott Williams & Wilkins, Philadelphia, 281–315

    Google Scholar 

  4. Wolpart MJ (2001) Complement. N Engl J Med 344 (Part I): 1059–1066

    Google Scholar 

  5. Wolpart MJ (2001) Complement. N Engl J Med 344 (Part II): 1140–1044

    Google Scholar 

  6. Kilgore KS, Todd RF, III, Lucchesi BR (1999) Reperfusion injury. In: Feron DT, Haynes BF, Nathan C (eds): Inflammation,basic principles and clinical correlates. Lippincott Williams & Wilkins, Philadelphia, 1047–1060

    Google Scholar 

  7. Tanhehco EJ, Kilgore KS, Liff DA, Murphy KL, Fung MS, Sun WN, Sun C, Lucchesi BR (1999) The anti-factor D antibody, MAb 166–32, inhibits the alternative pathway of the human complement system. Transplant Proc 31: 2168–2171

    Article  PubMed  CAS  Google Scholar 

  8. Fung M, Loubser PG, Undar A, Mueller M, Sun C, Sun WN, Vaughn WK, Fraser CD Jr. (2001) Inhibition of complement, neutrophil, and platelet activation by an anti-factor D monoclonal antibody in simulated cardiopulmonary bypass circuits. J Thorac Cardiovasc Surg 122: 113–122

    Article  PubMed  CAS  Google Scholar 

  9. Stoica SC, Goddard M, Large SR (2002) The endothelium in clinical cardiac transplantation. Ann Thorac Surg 73: 1002–1008

    Article  PubMed  Google Scholar 

  10. Weisman HF, Bartow T, Leppo MK, Mash HC Jr, Carson GR, Concino MF, Bayle MP, Roux KH, Weisfeldt ML, Fearon DT et al (1990) Soluble human complement receptor type 1: In vivo inhibitor of complement suppressing post-ischemic myocardial inflammation and necrosis. Science 249: 146–151

    Article  PubMed  CAS  Google Scholar 

  11. Moran P, Beasley H, Gorrell A, Martin E, Gribling P, Fuchs H, Gillett N, Burton LE, Caras IW (1992) Human recombinant soluble decay accelerating factor inhibits complement activation in vitro and in vivo. J Immunol 149: 1736–1743

    PubMed  CAS  Google Scholar 

  12. Zalman LS, Brothers MA, Muller-Eberhard HJ (1989) Isolation of homologous restriction factor from human urine. Immunochemical properties and biologic activity. J Immunol 143: 1943–1947

    PubMed  CAS  Google Scholar 

  13. Ko J-L, Lobell R, Sardonini C, Alessi MK, Yeh CG (1997) A soluble chimeric complement inhibitory protein that possesses both decayaccelerating and factor I cofactor activities. J Immunol 158: 2872–2881

    PubMed  Google Scholar 

  14. Rollins SA, Zhao J, Ninomiya H, Sims PJ (1991) Inhibition of homologous complement by CD59 is mediated by a species-selective recognition conferred through binding to C8 within C5b-8 or C9 within C5b-9. J Immunol 146: 2345–2351

    PubMed  CAS  Google Scholar 

  15. Ninomiya H, Sims PJ (1992) The human complement regulatory proteins CD59 binds to the a-chain of C8 and to the “b” domain of C9. J Biol Chem 267: 13675–13680

    PubMed  CAS  Google Scholar 

  16. Davis EA, Pruitt SK, Greene PS, Ibrahim S, Lam TT, Levin JL, Baldwin WM, Sanfilippo F, Baldwin WM, III (1996) Inhibition of complement, evoked antibody, and cellular response prevents rejection of pig-to-primate cardiac xenografts. Transplantation 62: 1018–1023

    Article  PubMed  CAS  Google Scholar 

  17. de Zwaan C, Kleine AH, Diris JH, Glatz JF, Wellens HJ, Strengers PF, Tissing M, Hack CE, van Dieijen-Visser MP, Hermens WT (2002) Continuous 48-h Cl-inhibitor treatment, following reperfusion therapy, in patients with acute myocardial infarction. Eur Heart J 23: 1670–1677

    PubMed  Google Scholar 

  18. Fodor WL, Williams BL, Matis LA, Madri JA, Rollins SA, Knight JW, Velander W, Squinto SP (1994) Expression of a functional human complement inhibitor in a trans-genic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci USA 91: 11153–11157

    Article  PubMed  CAS  Google Scholar 

  19. Rosengard AM, Cary N, Horsley J, Belcher C, Langford G, Cozzi E, Wallwork J, White DJ (1995) Endothelial expression of human decay accelerating factor in transgenic pig tissue: A potential approach for human complement inactivation in discordant xenografts. Transplant Proc 27: 326–327

    PubMed  CAS  Google Scholar 

  20. McCurry KR, Kooyman, DL, Diamond LE, Byrne GW, Martin MJ, Logan JS, Platt JL (1995) Human complement regulatory proteins in transgenic animals regulate complement activation in xenoperfused organs. Transplant Proc 27: 317–318

    PubMed  CAS  Google Scholar 

  21. Waterworth PD, Cozzi E, Tolan MJ, Langford G, Braidley P, Chavez G, Dunning J, Wallwork J, White D (1997) Pig-to-primate cardiac xenotransplantation and cyclophosphamide therapy. Transplant Proc 29: 899–900

    Article  PubMed  CAS  Google Scholar 

  22. Shiraishi M, Oshiro T, Nozato E, Nagahama M, Taira K, Nomura H, Sugawa H, Muto Y (2002) Adenovirus-mediated gene transfer of triple human complement regulating proteins (DAF, MCP and CD59) in the xenogeneic porcine-to-human transplantation model. Part II: Xenogeneic perfusion of the porcine liver in vivo. Transpl Int 15: 212–219

    PubMed  CAS  Google Scholar 

  23. Rossen RD, Swain JL, Michael LH, Weakley S, Giannini E, Entman ML (1985) Selective accumulation of the first component of complement and leukocytes in ischemic Elaine J. Tanhehco and Benedict R. Lucchesicanine heart muscle. A possible initiator of an extra myocardial mechanism of ischemic injury. Circ Res 57: 119–130

    Article  PubMed  CAS  Google Scholar 

  24. Mathey D, Schofer J, Schafer HJ, Hamdoch T, Joachim HC, Ritgen A, Hugo F, Bhakdi S (1994) Early accumulation of the terminal complement-complex in the ischaemic myocardrium after reperfusion. Eur Heart J 15: 418–423

    PubMed  CAS  Google Scholar 

  25. Yasojima K, Kilgore KS, Washington RA, Lucchesi BR, McGeer PL (1998) Complement gene expression by rabbit heart: Upregulation by ischemia and reperfusion. Circ Res 82: 1224–1230

    Article  PubMed  CAS  Google Scholar 

  26. Yasojima K, Schwab C, McGeer EG, McGeer PL (1998) Human heart generates complement proteins that are upregulated and activated after myocardial infarction. Circ Res 83: 860–869

    Article  PubMed  CAS  Google Scholar 

  27. Vakeva A, Laurila P, Meri S (1993) Co-deposition of clusterin with the complement membrane attack complex in myocardial infarction. Immunology 80: 177–182

    PubMed  CAS  Google Scholar 

  28. McManus LM, Kolb WP, Crawford MH, O’Rourke RA, Grover FL, Pinckard RN (1983) Complement localization in ischemic baboon myocardium. Lab Invest 48: 436–447

    PubMed  CAS  Google Scholar 

  29. Langlois PF, Gawryl MS (1988) Detection of the terminal complement complex in patient plasma following acute myocardial infarction. Atherosclerosis 70: 95–105

    Article  PubMed  CAS  Google Scholar 

  30. Yasuda M, Kawarabayashi T, Akioka K, Teragaki M, Oku H, Kanayama Y, Takeuchi K, Takeda T, Kawase Y, Ikuno Y (1989) The complement system in the acute phase of myocardial infarction. Jpn Circ J 53: 1017–1022

    Article  PubMed  CAS  Google Scholar 

  31. Semb AG, Vaage J, Sorlie D, Lie M, Mjos OD (1990) Coronary trapping of a complement activation product (C3a des-Arg) during myocardial reperfusion in open-heart surgery. Scand J Thorac Cardiovasc Surg 24: 223–227

    Article  PubMed  CAS  Google Scholar 

  32. Kilgore KS, Miller BF, Flory CM, Evans VM, Warren JS (1996) The membrane attack complex of complement induces monocyte chemoattractant protein-1 and interkeukin8 secretion from human umbilical vein endothelial cells. Am J Pathol 149: 953–961

    CAS  Google Scholar 

  33. Kilgore KS, Shen J, Miller BF, Ward PA, Warren JS (1995) Enhancement by the complement membrane attack complex of tumor necrosis factor-induced endothelial cell expression of ICAM-1 and E-selectin. J Immunol 155: 1434–1441

    PubMed  CAS  Google Scholar 

  34. Hattori R, Hamilton KK, McEver RP, Sims PJ (1989) Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willenbrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem 264: 9053–9060

    PubMed  CAS  Google Scholar 

  35. Werns SW, Lucchesi BR (1990) Free radicals and ischemic tissue injury. Trends Pharmacol Sciences 11 (4): 161–166

    Article  CAS  Google Scholar 

  36. Adlers S, Baker PJ, Johnson RJ, Ochi RF, Pritzl P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77: 762–767

    Article  Google Scholar 

  37. Hansch GM, Seitz M, Betz M (1987) Effect of the late complement components C5b-9 on human monocytes: release of prostanoids, oxygen radical and of a factor inducing cell proliferation. Int Arch Allergy Appl Immunol 82: 317–321

    Article  PubMed  CAS  Google Scholar 

  38. Reiter Y, Ciobotariu A, Fishelson Z (1992) Sublytic complement attack protects tumor cells from lytic doses of antibody and complement. Eur J Immunol 22: 1207–1213

    Article  PubMed  CAS  Google Scholar 

  39. Marchbank KJ, Van Den Berg CW, Morgan BP (1997) Mechanisms of complement resistance induced by non-lethal complement attack and by growth arrest. Immunology 90: 647–653

    Article  PubMed  CAS  Google Scholar 

  40. Niculescu F, Rus H, Shin ML (1994) Receptor-independent activation of guanine nucleotide-binding regulatory proteins by terminal complement complexes. J Biol Chem 269: 4417–4423

    PubMed  CAS  Google Scholar 

  41. Carney DF, Lang TJ, Shin ML (1990) Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol 145: 623–629

    PubMed  CAS  Google Scholar 

  42. Morgan BP, Campbell AK (1985) A recovery of human polymorphonuclear leukocytes from sublytic complement attack is mediated by changes in intracellular free calcium. Biochem J 231: 205–208

    PubMed  CAS  Google Scholar 

  43. Carney DF, Hammer CH, Shin ML (1986) Elimination of terminal complement complexes in the plasma membrane of nucleated cells: Influence of extracellular Ca’ and association with cellular Ca’. J Immunol 137: 263–270

    PubMed  CAS  Google Scholar 

  44. Tedesco F, Pausa M, Nardon E, Introna M, Mantovani A, Dobrina A (1997) The cytolytically inactive terminal complement complex activates endothelial cells to express adhesion molecules and tissue factor procoagulant activity. J Exp Med 185: 1619–1627

    Article  PubMed  CAS  Google Scholar 

  45. Tanhehco EJ, Lee H, Lucchesi BR (2000) Sublytic complement attack reduces infarct size in rabbit isolated hearts: Evidence for C5a-mediated cardioprotection. Immunopharmacol 49: 391–399

    Article  CAS  Google Scholar 

  46. Tanhehco EJ, Yasojima K, McGeer PL, McGeer EG, Lucchesi BR (2000) Preconditioning reduces myocardial complement gene expression in vivo. Am J Physiol Heart Circ Physiol 279: H1157–H1165

    PubMed  Google Scholar 

  47. Tanhehco EJ, Yasojima K, McGeer PL, Washington RA, Lucchesi BR (2000) Free radicals upregulate complement expression in the rabbit isolated heart. Am J Physiol Heart Circ Physiol 279: H195–H201

    PubMed  Google Scholar 

  48. Abe J, Berk BC (1998) Reactive oxygen species as mediators of signal transduction in cardiovascular disease. Trends Cardiovasc Med 8: 59–64

    Article  PubMed  CAS  Google Scholar 

  49. Satriano JA, Shuldiner M, Kazuhiko H, Xing Y, Shan Z, Schlondorff D (1993) Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G: Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J Clin Invest 92: 1564–1571

    Article  PubMed  CAS  Google Scholar 

  50. Moon MR, Parikh AA, Pritts TA, Fischer JE, Cottongim S, Szabo C, Salzman AL, Hasselgren PO (1999) Complement component C3 production in IL-113-stimulated human intestinal epithelial cells is blocked by NF-KB inhibitors and by transfection with Ser 32/36 mutant IxBa. J Surg Res 82: 48–55

    Article  PubMed  CAS  Google Scholar 

  51. Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT (1998) Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273: 18092–18098

    Article  PubMed  CAS  Google Scholar 

  52. Flynn PJ, Becker WK, Vercellotti GM, Weisdorf DJ, Craddock PR, Hammerschmidt D E, Lillehei RC, Jacob HS (1984) Ibuprofen inhibits granulocyte responses to inflammatory mediators. A proposed mechanism for reduction of experimental myocardial infarct size. Inflammation 8: 33–44

    Article  PubMed  CAS  Google Scholar 

  53. Venezio FR, DiVincenzo C, Pearlman F, Phair JP (1985) Effects of the newer nonsteroidal anti-inflammatory agents, ibuprofen, fenoprofen, and sulindac, on neutrophil adherence. J Infect Dis 152: 690–694

    Article  PubMed  CAS  Google Scholar 

  54. Simpson PJ, Mickelson J, Fantone JC, Gallagher KP, Lucchesi BR (1987) Iloprost inhibits neutrophil function in vitro and in vivo and limits experimental infarct size in canine heart. Circ Res 60: 666–673

    Article  PubMed  CAS  Google Scholar 

  55. Amsterdam EA, Stahl GL, Pan HL, Rendig SV, Fletcher MP, Longhurst JC (1995) Limitation of reperfusion injury by a monoclonal antibody to C5a during myocardial infarction in pigs. Am J Physiol 268: H448–H457

    Google Scholar 

  56. Dreyer WJ, Michael LH, Nguyen T, Smith CW, Anderson DC, Entman ML, Rossen RD (1992) Kinetics of C5a release in cardiac lymph of dogs experiencing coronary artery ischemia-reperfusion injury. Circ Res 71: 1518–1524

    Article  PubMed  CAS  Google Scholar 

  57. Shandelya SM, Kuppusamy P, Herskowitz A, Weisfeldt ML, Zweier JL (1993) Soluble complement receptor type-1 inhibits the complement pathway and prevents contractile failure in the postischemic heart. Evidence that complement activation is required for neutrophil-mediated reperfusion injury. Circulation 88: 2812–2826

    Article  PubMed  CAS  Google Scholar 

  58. Ivey CL, Williams FM, Collins PD, Jose PJ, Williams TJ (1995) Neutrophil chemoattractants generated in two phases during reperfusion of ischemic myocardium in the rabbit. Evidence for a role for C5a and Interleukin-8. J Clin Invest 95: 2720–2728

    Article  PubMed  CAS  Google Scholar 

  59. Romson JL, Hook BG, Rigot VH, Schork MA, Swanson DP, Lucchesi BR (1982) The effect of ibuprofen on accumulation of ‘Indium labeled platelets and leukocytes in experimental myocardial infarction. Circulation 66: 1002–1011

    Article  PubMed  CAS  Google Scholar 

  60. Dreyer WJ, Smith CW, Michael LH, Rossen RD, Hughes BJ, Entman ML, Anderson DC (1989) Canine neutrophil activation by cardiac lymph obtained during reperfusion of ischemic myocardium. Circ Res 65: 1751–1762

    Article  PubMed  CAS  Google Scholar 

  61. Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR (1983) Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the dog. Circulation 67: 1016–1023

    Article  PubMed  CAS  Google Scholar 

  62. Homeister JW, Satoh P, Lucchesi BR (1992) Effects of complement activation in the isolated heart. Role of the terminal complement components. Circ Res 71: 303–319

    Article  PubMed  CAS  Google Scholar 

  63. Ito W, Schafer HJ, Bhakdi S, Klask R, Hansen S, Schaarschmidt S, Schofer J, Hugo F, Hamdoch T, Mathey D (1996) Influence of the terminal complement complex on reperfusion injury, no-reflow and arrhythmias: A comparison between C6-competent and C6-deficient rabbits. Cardiovas Res 32: 294–305

    Article  CAS  Google Scholar 

  64. Vanden Hoek TL, Quin Y, Wojcik K, Li CQ, Shao ZH, Anderson T, Becker LB, Hamann KJ (2002) Reperfusion, not simulated ischemia, initiates intrinsic apoptosis injury in chick cardiomyocytes. Am J Physiol Heart Circ Physiol 84: H141–H150

    Google Scholar 

  65. Vanden Hoek L, Shao Z, Li P, Zak R, Schumacker PT, Becker LB (1996) Reperfusion injury in cardiac myocytes after simulated ischemia. Am J Physiol Heart Circ Physiol 270: H1334–H1341

    Google Scholar 

  66. Maroko PR, Carpenter CB, Chiariello M, Fishbein MC, Radvany P, Knostman JD, Hale SL (1978) Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. J Clin Invest 61: 661–670

    Article  PubMed  CAS  Google Scholar 

  67. Vakeva A, Morgan BP, Tikkanen I, Helin K, Laurila P, Meri S (1994) Time course of complement activation and inhibitor expression after ischemic injury of rat myocardium. Am J Pathol 144: 1357–1368

    PubMed  CAS  Google Scholar 

  68. Gralinski MR, Driscoll EM, Friedrichs GS, DeNardis MR, Lucchesi BR (1996) Reduction of myocardial necrosis after glycosaminoglycan administration: Effects of a single intravenous administration of heparin or N-acetylheparin 2 hours before regional ischemia and reperfusion. J Cardiovasc Pharmacol Ther 1: 219–228

    PubMed  CAS  Google Scholar 

  69. Rinder CS, Rinder HM, Smith MJ, Tracey JB, Fitch J, Li L, Rollins SA, Smith B (1999) Selective blockade of membrane attack complex formation during simulated extracorporeal circulation inhibits platelet but not leukocyte activation. J Thorac Cardiovasc Surg 118: 460–466

    Article  PubMed  CAS  Google Scholar 

  70. Fitch JC, Rollins S, Matis L, Alford B, Aranki S, Collard CD, Dewar M, Elefteriades J, Hines R, Kopf G et al (1999) Pharmacology and biological efficacy of a recombinant, humanized, single-chain antibody C5 complement inhibitor in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass. Circulation 100: 2499–2506

    Article  PubMed  CAS  Google Scholar 

  71. Friedrichs GS, Kilgore KS, Manley PJ, Gralinski MR, Lucchesi BR (1994) Effects of heparin and N-acetyl heparin on ischemia/reperfusion-induced alterations in myocardial function in the rabbit isolated heart. Circ Res 75: 701–710

    Article  PubMed  CAS  Google Scholar 

  72. Black SC, Gralinski MR, Friedrichs GS, Kilgore KS, Driscoll EM, Lucchesi BR (1995) Cardioprotective effects of heparin or N-acetylheparin in an in vivo model of myocardial ischaemic and reperfusion injury. Cardiovasc Res 29: 629–636

    PubMed  CAS  Google Scholar 

  73. Weiler JM, Edens RE, Linhardt RJ, Kapelanski DP (1992) Heparin and modified heparin inhibit complement activation in vivo. J Immunol 148: 3210–3215

    PubMed  CAS  Google Scholar 

  74. Ecker EE, Gross P (1929) Anticomplementary power of heparin. J Infect Dis 44: 250–253

    Article  CAS  Google Scholar 

  75. Baker PJ, Lint TF, McLeod BC, Behrends CL, Gewurz H (1975) Studies on the inhibition of C56-induced lysis (reactive lysis). VI. Modulation of C56-induced lysis polyanions and polycations. J Immunol 114: 554–558

    PubMed  CAS  Google Scholar 

  76. Loos M, Volanakis JE, Stroud RM (1976) Mode of interaction of different polyanions with the first (C1, C1), the second (C2) and the fourth (C4) component of complement-II. Effect of polyanions on the binding of C2 to EAC4b. Immunochemistry 13: 257–261

    Article  PubMed  CAS  Google Scholar 

  77. Sharath MD, Merchant ZM, Kim YS, Rice KG, Linhardt RJ, Weiler JM (1985) Small heparin fragments regulate the amplification pathway of complement. Immunopharmacology 9: 73–80

    Article  PubMed  CAS  Google Scholar 

  78. Men S, Pangburn MK (1990) Discrimination between activators and nonactivators of the alternative pathway of complement: Regulation via a sialic acid/polyanion binding site on factor H. Proc Natl Acad Sci USA 87: 3982–3986

    Article  Google Scholar 

  79. Men S, Pangburn MK (1994) Regulation of alternative pathway complement activation by glycosaminoglycans: Specificity of the polyanion binding site on factor H. Biochem Biophys Res Commun 198: 52–59

    Article  Google Scholar 

  80. Tyrrell DJ, Home AP, Holme KR, Preuss JMH, Page CP (1999) Heparin in inflammation: Potential therapeutic applications beyond anticoagulation. In: JT August, MW Anders, F Murad, JT Coyle (eds): Advances in pharmacology (vol 46). Academic Press, London, 151–208

    Google Scholar 

  81. Saliba M Jr, Covell JW, Bloor CM (1976) Effects of heparin in large doses on the extent of myocardial ischemia after acute coronary occlusion in the dog. Am J Cardiol 37: 599–604

    Article  PubMed  CAS  Google Scholar 

  82. Gralinski MR, Park JL, Ozeck MA, Wiater BC, Lucchesi BR (1997) LU 51198, a highly sulphated, low-molecular-weight heparin derivative, prevents complement-mediated myocardial injury in the perfused isolated rabbit heart. J Cardiovasc Pharmacol Therapeut 282: 554–560

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Tanhehco, E.J., Lucchesi, B.R. (2003). The Role of Complement in Myocardial Inflammation and Reperfusion Injury. In: Feuerstein, G.Z., Libby, P., Mann, D.L. (eds) Inflammation and Cardiac Diseases. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8047-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8047-3_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9419-7

  • Online ISBN: 978-3-0348-8047-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics