Skip to main content

A Review of the Morph Server and the Macromolecular Motions Database: A Standardized System for Analyzing and Visualizing Macromolecular Motions in a Database Framework

  • Chapter
Polymer and Cell Dynamics

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

  • 361 Accesses

Summary

The number of solved structures of macromolecules that have the same fold and thus exhibit some degree of conformational variability is rapidly increasing. It is consequently advantageous to develop a standardized terminology for describing this variability and automated systems for processing protein structures in different conformations. We have developed such a system as a ‘front-end’ server to our database of macromolecular motions, a database that classifies proteins into a limited number of categories, first on the basis of size (distinguishing among fragment, domain, and subunit motions) and then on the basis of packing. Our system attempts to describe a protein motion as a rigid-body rotation of a small ‘core’ relative to a larger one, using a set of hinges. The motion is placed in a standardized coordinate system so that all statistics between any two motions are directly comparable. We find that while this model can accommodate most protein motions, it cannot accommodate all; the degree to which a motion can be accommodated provides an aid in classifying it. Furthermore, we perform an adiabatic mapping (a restrained interpolation) between every two conformations. This gives some indication of the extent of the energetic barriers that need to be surmounted in the motion, and, as a byproduct, results in a ‘morph movie.’ We make these movies available over the Web to aid in visualization. Many instances of conformational variability occur between proteins with somewhat different sequences. We can accommodate these differences in a rough fashion, generating an ‘evolutionary morph.’ Users have already submitted hundreds of examples of protein motions to our server, producing a comprehensive set of statistics. So far the statistics show that the median submitted motion has a rotation of 10 degrees and a maximum C-alpha displacement of 17 Å. Almost all involve at least one large torsion angle charge of >140 degrees. The server is accessible at http://bioinfo.mbb.yale.edu/MolMovDB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad-Zapatero, C., J. P. Griffith, et al. (1987) Refined Crystal Structure of Dogfish M4 Apolactate Dehydrogenase. J Mol Biol 198, 445–67

    Article  Google Scholar 

  2. Bennett, W. S. and R. Huber (1984) Structural and Functional Aspects of Domain Motion in Proteins. Crit Rev Biochem 15, 291–384

    Article  Google Scholar 

  3. Bennett, W. S., Jr and T. A. Steitz (1978) Glucose induced conformational change in yeast hexokinase. Proc Natl Acad Sci USA 75, 4848–4852

    Article  Google Scholar 

  4. Boutonnet, N. S., M. J. Rooman, et al. (1995) Automatic analysis of protein conformational changes by multiple linkage clustering. J Mol Biol 253, 633–647

    Article  Google Scholar 

  5. Brünger, A. T. (1993) X-PLOR 3.1, A System for X-ray Crystallography and NMR. New Haven, Yale University Press.

    Google Scholar 

  6. Bystrom, C. E., D. W. Pettigrew, et al. (1999) Crystal structures of Escherichia coli glycerol kinase variant S58—>W in complex with nonhydrolyzable ATP analogues reveal a putative active conformation of the enzyme as a result of domain motion. Biochemistry 38, 3508–3518

    Article  Google Scholar 

  7. Chothia, C., A. M. Lesk, et al. (1983) Transmission of conformational change in insulin Nature 302, 500–505

    Google Scholar 

  8. Crofts, A. R. and E. A. Berry (1998) Structure and function of the cytochrome bcl complex of mitochondria and photosynthetic bacteria. Curr Opin Struct Biol 8(4), 501–509

    Article  Google Scholar 

  9. Crofts, A. R., S. Hong, et al. (1999) Pathways for proton release during ubihydroquinone oxidation by the bc(1) complex. Proc Natl Acad Sci USA 96, 10021–10026

    Article  Google Scholar 

  10. Epstein, J. A., J. A. Kans, et al. (1994) WWW Entrez: A Hypertext Retrieval Tool for Molecular Biology. 2nd Ann Int WWW Conf

    Google Scholar 

  11. Feese, M. D., H. R. Faber, et al. (1998) Glycerol kinase from Eschcrichia coli and an Ala65>Thr mutant: the crystal structures reveal conformational changes with implications for allosteric regulation. Structure 6, 1407–1418

    Article  Google Scholar 

  12. Gerstein, M. (1997) A Structural Census of Genomes: Comparing Bacterial, Eukaryotic, and Archaeal Genomes in terms of Protein Structure. J Mol Biol 274, 562–576

    Article  Google Scholar 

  13. Gerstein, M. and W. Krebs (1998) A Database of Macromolecular Movements. Nucl. Acids Res 26, 4280

    Article  Google Scholar 

  14. Gerstein, M., A. Lesk, et al. (1995) Structural Mechanisms for Protein Motions. Protein Motions. S. Subbiah. Austin, TX, R G Landes.

    Google Scholar 

  15. Gerstein, M., A. M. Lesk, et al. (1993) Domain Closure in Lactoferrin: Two Hinges produce a See-saw Motion between Alternative Close-Packed Interfaces. J Mol Biol 234, 357–372

    Article  Google Scholar 

  16. Gerstein, M., A. M. Lesk, et al. (1994) Structural Mechanisms for Domain Movements. Biochemistry 33, 6739–6749

    Article  Google Scholar 

  17. Gerstein, M. and M. Levitt (1998) Comprehensive Assessment of Automatic Structural Alignment against a Manual Standard, the Scop Classification of Proteins. Protein Science 7, 445–456

    Article  Google Scholar 

  18. Gerstein, M. and C. Wilson (2000) Assessing Annotation Transfer for Genomics: Quantifying the relations between protein sequence, structure, and function through traditional and probabilistic scores. J Mol Biol 297, 233–249

    Article  Google Scholar 

  19. Gerstein, M. B., R. Jansen, et al. (1999) Studying Macromolecular Motions in a Database Framework: From Structure to Sequence. Rigidity theory and applications. (M. F. Thorpe and P. M. Duxbury) Kluwer Academic/Plenum press, 401–442

    Google Scholar 

  20. Harpaz, Y., M. Gerstein, et al. (1994) Volume Changes on Protein Folding. Structure 2, 641–649

    Article  Google Scholar 

  21. Holm, L. and C. Sander (1996) Mapping the Protein Universe. Science 273, 595–602

    Article  Google Scholar 

  22. Hughes, D. (1996) mini-SQL program.http://Hughes.corn.au

  23. Janin, J. and S. Wodak (1983) Structural domains in proteins and their role in the dynamics of protein function. Prog Biophys Mol Biol 42, 21–78

    Article  Google Scholar 

  24. Joseph, D., G. A. Petsko, et al. (1990) Anatomy of Conformational Change: Hinged ‘Lid’ Motion of the Triosephosphosphate Isomerase Loop. Science 249, 1425–1428

    Article  Google Scholar 

  25. Korth, H. and A. Silberschatz (1991) Database system concepts, 2nd edition. New York, McGraw-Hill

    Google Scholar 

  26. Krebs, W. G. and M. Gerstein (2000) The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. Nucleic Acids Res 28, 1665–1675

    Article  Google Scholar 

  27. Kuntz, I. D. (1992) Structure-Based Strategies for Drug Design and Discovery. Science 257, 1078–1082

    Article  Google Scholar 

  28. Lesk, A. M. and C. Chothia (1988) Elbow Motion in the immunoglobulins involves a molecular ball and socket joint. Nature 335, 188–190

    Article  Google Scholar 

  29. Levitt, M. and M. Gerstein (1998) A Unified Statistical Framework for Sequence Comparison and Structure Comparison. Proceedings of the National Academy of Sciences USA 95, 5913–5920.

    Article  Google Scholar 

  30. Levitt, M., M. Gerstein, et al. (1997) Protein Folding: the Endgame. Ann Rev Biochem 66, 549–579

    Article  Google Scholar 

  31. Murzin, A., S. E. Brenner, et al. (1995) SCOP: A Structural Classification of Proteins for the Investigation of Sequences and Structures. J Mol Biol 247, 536–540

    Google Scholar 

  32. Orengo, C. A., D. T. Jones, et al. (1994) Protein superfamilies and domain superfolds. Nature 372, 631–634

    Article  Google Scholar 

  33. Pande, V. S. and D. S. Rokhsar (1999) Folding pathway of a lattice model for proteins. Proc Natl Acad Sci USA 96, 1273–1278

    Article  Google Scholar 

  34. Pande, V. S. and D. S. Rokhsar (1999) Molecular dynamics simulations of unfolding and refolding of a beta-hairpin fragment of protein G [In Process Citation]. Proc Natl Acad Sci USA 96, 9062–9067

    Article  Google Scholar 

  35. Remington, S., G. Wiegand, et al. (1982) Crystallographic refinement and atomic models of two different forms of citrate synthase at 2.7 and 1.7 A resolution. J Mol Biol 158, 111–152

    Article  Google Scholar 

  36. Richards, F. M. (1977) Areas, Volumes, Packing, and Protein Structure. Ann Rev Biophys Bioeng 6, 151–176

    Article  Google Scholar 

  37. Richards, F. M. (1985) Calculation of Molecular Volumes and Areas for Structures of Known Geometry. Methods in Enzymology 115, 440–464

    Article  MathSciNet  Google Scholar 

  38. Richards, F. M. and W. A. Lim (1994) An analysis of packing in the protein folding problem. Quart Rev Biophys 26, 423–498

    Article  Google Scholar 

  39. Rowe, L. A. and M. R. Stonebraker (1987). The POSTGRES data model. Proceedings of the Thirteenth International Conference on Very Large Data Bases: 1987 13th VLDB. (P. M. Stocker, W. Kent and P. Hammersley) Los Altos, CA, USA, Morgan Kaufmann, 83–96

    Google Scholar 

  40. Rye, H., S. Burston, et al. (1997) Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL. Nature 388, 792–798

    Article  Google Scholar 

  41. Sawaya, M. R., R. Prasad, et al. (1997). Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism. Biochemistry 36, 11205–11215

    Article  Google Scholar 

  42. Schuler, G. D., J. A. Epstein, et al. (1996) Entrez: Molecular Biology Database and Retrievel System. Meth Enz 266, 141–162.

    Article  Google Scholar 

  43. Sigler, P. B., Z. Xu, et al. (1998) Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67, 581–608

    Article  Google Scholar 

  44. Stonebraker, M. R. and L. A. Rowe (1986). The Design of POSTGRES. Proc. 1986 ACMACM-SIGMOD Conf. on Management of Data Int. Conf. on Mgt. of Data.

    Google Scholar 

  45. Sykes, J. A., M. J. Thomas, et al. (1982) Plasma lactoferrin levels in pregnancy and cystic fibrosis. Clin Chim Acta 122, 385–393

    Article  Google Scholar 

  46. Thompson, A. B., M. B. Mueller, et al. (1992) Aerosolized beclomethasone in chronic bronchitis. Improved pulmonary function and diminished airway inflammation. Am Rev Respir Dis 146, 389–95

    Google Scholar 

  47. Verschelde, J. L., C. Ampe, et al. (1998) Analysis of three human interleukin 5 structures suggests a possible receptor binding mechanism. FEBS Lett 424, 121–126

    Article  Google Scholar 

  48. Vonrhein, C., H. Bonisch, et al. (1998) The structure of a trimeric archaeal adenylate kinase. J Mol Biol 282, 167–179

    Article  Google Scholar 

  49. Vonrhein, C., G. J. Schlauderer, et al. (1995) Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Structure 3, 483–490

    Article  Google Scholar 

  50. Vyas, N. K., M. N. Vyas, et al. (1991) Comparison of the periplasmic receptors for Larabinose, D-glucose, and D-ribose — structural and functional similarity. J Biol Chem 266, 5226–5237

    MathSciNet  Google Scholar 

  51. Wade, R. C., M. E. Davis, et al. (1993) Gating of the active site of triose phosphate isomerase: Brownian dynamics simulations of flexible peptide loops in the enzyme. Biophys J 64, 9–15

    Article  Google Scholar 

  52. Wierenga, R. K., M. E. M. Noble, et al. (1991) The crystal structure of the “open” and the “closed” conformation of the flexible loop of trypanosomal triosephosphate isomerase. Proteins 10, 93

    Article  Google Scholar 

  53. Xu, Z., A. L. Norwich, et al. (1997) The crystal structure of the asymmetric GroEL-GroES(ADP)7 chaperonin complex. Nature 388, 741–750

    Article  Google Scholar 

  54. Xu, Z. and P. B. Sigler (1998) GroEL/GroES: structure and function of a two-stroke folding machine. J Struct Biol 124, 129–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Krebs, W.G., Gerstein, M. (2003). A Review of the Morph Server and the Macromolecular Motions Database: A Standardized System for Analyzing and Visualizing Macromolecular Motions in a Database Framework. In: Alt, W., Chaplain, M., Griebel, M., Lenz, J. (eds) Polymer and Cell Dynamics. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8043-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8043-5_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9417-3

  • Online ISBN: 978-3-0348-8043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics