Skip to main content

On Selected Individual-based Approaches to the Dynamics in Multicellular Systems

  • Chapter
Polymer and Cell Dynamics

Part of the book series: Mathematics and Biosciences in Interaction ((MBI))

Summary

In recent years a number of different individual-based models for spatiotemporal dynamics in multicellular organisms or parts of them have been established. Individual-based models (here: individuum = cell) become necessary if (i) one is interested in understanding the organization principles in tissues down to length scales of the order of a cell diameter in order to link the microscopic dynamics with a collective phenomenon, and (ii) the phenomenon under study includes variations of material or kinetic properties on length scales of the order of the cell diameter. In this article we give a brief overview over a number of individual-based model approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agur, Z., Daniel, Y. and Ginosar, Y (2002) The universal properties of stem cells as pinpointed by a simple discrete model. J Math Biol 44 (1), 79–86

    MathSciNet  MATH  Google Scholar 

  2. Anderson, A (2000) Mathematical modeling of tumor invasion and metastasis. J Theor Med 2, 129–154

    MATH  Google Scholar 

  3. Ashcroft, N.W. and Mermin, N.D (1976) Solid state physics.(Hold Sounders International)

    Google Scholar 

  4. Batchelor, M.T., Henry, B.I (1991) Limits to Eden growth in two and three dimensions. Phys LettA 157 (4.5), 229–236

    Google Scholar 

  5. Ben-Jacob, E., Cohen, I. and Levine, H (2000) Cooperative self-organization of microorganisms. Adv in Phys 49 (4), 395–554

    Google Scholar 

  6. Beysens, D., Forgacs, G. and Glazier, J.A (2000) Cell sorting is analogous to phase ordering in fluids. PNAS 97 (17), 9467–9471

    Google Scholar 

  7. Börner, U., Deutsch, A., Reichenbach, H. and Bär, M (2001) Rippling in myxobacterial aggregates - Patterns arising from cell-cell collisions. Preprint Max-Planck-Inst. f Physics of Complex Systems(Dresden)

    Google Scholar 

  8. Bottino, D., Mogilner, A., Roberts, T., Steward, M., and Oster, G. (2002) How nematode sperm crawl. J. Cell Sci. 115, 367–384

    Google Scholar 

  9. Bretschneider T, Vasiev B, Weijer CJ (1997) A model for cell movement duringDictyosteliummound formation. J Theor Biol 189 (1), 41–51

    Google Scholar 

  10. Bru, A., Pastor, J.M., Fernand, I., Melle, S., and Berenguer, C. (1998) Super-rough dynamics on tumor growth. Phys Rev Lett 81 (18), 4008–4011

    Google Scholar 

  11. Bussemaker, H.J., Deutsch, A. and Geigant, E (1997) Mean-field analysis of a dynamical phase transition in a cellular automaton model for collective motion. Phys Rev Len 78 (26), 5018–5021

    Google Scholar 

  12. Clem, C.J., König, D., and Rigaut, J.P (1997) A Three-dimensional dynamic simulation model of epithelial tissue renewal. Anal Quant Cytol Histol 19 (2)

    Google Scholar 

  13. Czirok, A., Ben-Jacob, E., Cohen, I., and Vicsek, T (1996) Formation of complex bacterial colonies via self-generated vortices. Phys Rev E 540 (2), 1791–1801

    Google Scholar 

  14. Davidson, L.A., Koehl, M.A.R., Keller, R. and Oster, G.F (1995) How do sea urchins invaginate? Using bio-mechanics to distinguish between mechanisms of primary invagination. Development 121, 2005–2018

    Google Scholar 

  15. Deutsch A (1999) Cellular automata and biological pattern formation Habilitation Theses University of Bonn, Germany

    Google Scholar 

  16. Drasdo, D., Kree, R. and McCaskill, J.S (1995) A Monte Carlo model to tissue cell populations. Phys Rev E 52 (6), 6635–6657

    Google Scholar 

  17. Drasdo, D (1994) Monte Carlo Simulationen in zwei Dimensionen zur Beschreibung von Wachstumskinetik und Strukturbildungsphänomenen in Zellpopulationen. PhD-thesis (Göttingen, Nov. 1993 and Verlag Shaker) Aachen (ISBN 3–86111–785–1)

    Google Scholar 

  18. Drasdo, D (1996) Different growth regimes found in a Monte Carlo model of growing tissue cell populations. In:Self organization of complex structures: From individual to collective dynamics.(F. Schweitzer editor) Gordon and Breach, London, 281–292

    Google Scholar 

  19. Drasdo, D (1998) A Monte-Carlo approach to growing solid non-vascular tumor. In: Networks in Biology and Physics.(Beysens, D., Forgacs, G. eds.)Springer, 171–185

    Google Scholar 

  20. Drasdo, D. and Forgacs, G (2000) Modeling generic and genetic interactions in Cleavage, Blastulation and Gastrulation. Dev Dyn 219 (2), 182–191

    Google Scholar 

  21. Drasdo, D (2000) Buckling instabilities in one-layered growing tissues. Phys Rev Lett 84, 4424–4427

    Google Scholar 

  22. Drasdo, D. and Loeffler, M (2001) Individual-based models to growth and folding in one-layered tissues: Intestinal crypts and blastulation. Nonl Analysis 47, 245–256

    MathSciNet  MATH  Google Scholar 

  23. Drasdo, D. and Höhme, S (2001) Towards a quantitative single-cell based model approach to growing multicellular spheroids. Int. Workshop on Deformable Modeling and Soft Tissue Simulation.(accepted)

    Google Scholar 

  24. Drasdo, D. and Höhme, S (2002) Individual Based Approaches to Birth and Death in Avascular Tumors. Math Comp Mod(in press)

    Google Scholar 

  25. Dubertret, B. and Rivier, N (1997) The renewal of the epidermis: A topological mechanism. Biophys J 73 38–44

    Google Scholar 

  26. Dubertret, B., Aste, T, Ohlenbusch, H.M., and Rivier, N (1998) Two-dimensional froths and the dynamics of biological tissues. Phys Rev E 58 (5), 6368–6378

    Google Scholar 

  27. Düchting, W. and Vogelsänger, Th (1985) Recent progress in modelling and simulation of three-dimensional tumor growth and treatment. BioSystems 18, 79–91

    Google Scholar 

  28. Düchting, W., Ulmer, W. and Ginsberg, T (1996) Cancer: A challenge for control theory and computer modelling. Europ J Cancer 32A (8), 1283–1292

    Google Scholar 

  29. Dunphy, J.E (1978) Wound healing. MedCom-Press, New York

    Google Scholar 

  30. Eden, M (1961) In: Proc. of the 4th. Berkeley Symposium on Mathematics and Probability Vol. IV. ed. by. J. Neyman (University of California Press)

    Google Scholar 

  31. Forgacs, G., Foty, R.A., Shafrir, Y., and Steinberg, M.S. (1998) Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys J 74, 2227–2234

    Google Scholar 

  32. Fracchia, F.D., Prusinkiewicz, P., and De Boer, M.J.M (1990) Animation of the development of multicelluar structures. In: Computer Animation ‘80 (Magnenat-Thalmann, N. and Thalmann, D., eds.) Springer-Verlag Tokyo

    Google Scholar 

  33. Freyer, J.P. and Sutherland, R.M (1985) A reduction in the in situ rates of oxygen and glucose consumption of cells in EMT6/Ro spheroids during growth. J Cell Physiol 124, 516

    Google Scholar 

  34. Gompertz, B (1825) On the nature of the function expressive of the law of mortality. Phil Trans Roy Soc (Land.) 27, 513–585

    Google Scholar 

  35. Gilbert, S.F (1997) Developmental Biology. Sinauer Associates, Sunderland

    Google Scholar 

  36. Glazier, J.A., Graner, F (1993) Simulation of the differential adhesion driven rearrangement of biological cells. Phys Rev E 47 (3), 2128–2154

    Google Scholar 

  37. Godt, D. and Tepass, U (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391

    Google Scholar 

  38. Gompper, G., Kroll, D.M (1995) Driven transport of fluid vesicles though narrow pores. Phys Rev E 52 (4), 4198–4208

    Google Scholar 

  39. Gompper, G., Kroll, D.M (1997) Fluctuations of polymerized, fluid and hexatic membranes: Continuum models and simulations. Cur. Op. in Colloid & Interfacial Sci. 2, 373–381

    Google Scholar 

  40. Graner, F., Glazier, J.A (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 9 (13), 2013–2016

    Google Scholar 

  41. Graner, F. and Sawada, Y (1993) Can surface adhesion drive cell rearrangement? Part II: A geometrical model. J Theor Biol 164, 477–506

    Google Scholar 

  42. Halpin-Healy, T., Zhang Y.0 (1995) Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Phys Rep 254, 215

    Google Scholar 

  43. Herman, G.T. and Rozenberg, G (1975) Developmental systems and languages.(North Holland/American Elsevier)

    MATH  Google Scholar 

  44. Hogeweg, P (2000) Evolving mechanisms of morphogenesis: On the interplay between differential adhesion and cell differentiation. J Theor Biol 203, 317–333

    Google Scholar 

  45. Honda, H (1978) Description of cellular patterns by dirichlet domains: The two-dimensional case. J Theor Biol 72, 523–543

    MathSciNet  Google Scholar 

  46. Honda, H (1983) Geometrical models for cells in tissues. International Review of Cytology 81,191–248

    Google Scholar 

  47. Honda, H., Kodama, R., Takeuchi, T., Yamanaka, H., Watanabe, K., Eguchi, G (1984) Cell behaviour in a polygonal cell sheet. J Embryo! exp Morph Supplement 83, 313–327

    Google Scholar 

  48. Honda, H., Yamanaka, H. Dansohkawa, M. (1984) A computer simulation of geometrical configurations during cell division. J Theor Biol 106 (3), 423–435

    Google Scholar 

  49. Honerkamp (1998) J Statistical Physics (Springer, Berlin, Heidelberg)

    Google Scholar 

  50. Igoshin, O.A., Mogilner, A., Welch, R.D., Kaiser, D., and Oster, G (2001) Pattern formation and traveling waves in myxobacteria: theory and modeling. Proc Natl Acad Sci 18; 98 (26), 14913–14918

    Google Scholar 

  51. Isele, W.P. and Meinzer, H.P (1998) Applying computer modeling to examine complex dynamics and pattern formation of tissue growth. Comput Biomed Res 31, 476

    Google Scholar 

  52. Jiang, Y., Levine, H., Glazier, J (1998) Possible cooperation of differential adhesion and chemotaxis in mound formation ofDictyostelium. Biophys J 75 (6), 2615–2625

    Google Scholar 

  53. Kaandorp, J.A., Lowe, C.P., Frenkel, D., Sloot, P.M.A. (1996) Effect of nutrient diffusion and flow on coral morphology. Phys Rev Lett 77 (11), 2328–2331

    Google Scholar 

  54. Kam, Z., Minden, J., Agard, D., Sedat, J.W. and Leptin, M. (1991) Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence mircroscopy. Development 112, 365–370

    Google Scholar 

  55. Kansal, A.R., Torquato, S., Harsh IV, G.R., Chiocca, E.A., Deisboeck, T.S. (2000) Simulated brain tumor growth dynamics using a three-dimensional cellular automaton. J Theor Biol 203, 367–382

    Google Scholar 

  56. Kreft, J.U., Booth, G. and Wimpenny, J.W.T (1998) BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287

    Google Scholar 

  57. Krug, J. and Spohn, D (1991) Kinetic roughening of growing surfaces. In:Solids Far From Equilibrium(ed. by C. Godreche) Cambridge Univ., NY

    Google Scholar 

  58. Landau, D.P. and Binder, K. A (2000) Guide to Monte Carlo simulations.Statistical Physics, Cambridge Univ. Press

    MATH  Google Scholar 

  59. G. Landini and J.W. Rippin (1993) Fractal fragmentation in replicative systems. Fractals 1 (2), 239–246

    MATH  Google Scholar 

  60. Lindenmeyer, A (1968) Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. J Theor Biol 18, 280–299

    Google Scholar 

  61. Lindenmeyer, A (1968) Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. J Theor Biol 18, 300–315

    Google Scholar 

  62. Loeffler, M., Stein, R., Wichmann, H.E., Potten, C.S., Kraur., P., Chwalinski, S (1986) Intestinal cell proliferation I. A comprehensive model of steady-state proliferation in the crypt. Cell Tissue Kinet 19, 627–645

    Google Scholar 

  63. Maree, A.F.M., Panfilov, A.V., Hogeweg, P (1999a) Migration and thermotaxis of Dictyostelium discoideum slugs, a model study. J Theor Biol 199, 297–309

    Google Scholar 

  64. Maree, A.F.M., Panfilov, A.V., Hogeweg, P (1999b) Phototaxis during the slug stage of Dictyostelium discoideum slugs, a model study. Proc R Soc Lond Ser 266, 1351–1360

    Google Scholar 

  65. Markus, M. and Hess, B (1990) Isotropic cellular automaton for modelling excitable media. Nature 347 (6288), 56–58

    Google Scholar 

  66. Meakin, P (1993) The growth of rough surfaces and interfaces. Phys Rep 235 (4 & 5), 189–289

    Google Scholar 

  67. Meineke, F.A., Potten, S.C. and Loeffler, M (2001) Cell migration and organization in the intestinal crypt using a lattice-free model. Cell Prolif 34 (4), 253–266

    Google Scholar 

  68. Meinzer, H.P., Sandblad, B., and Baur, H.J (1992) Generation-dependent control mechanisms in cell proliferation and differentiation - the power of two. Cell Prolif 25, 125

    Google Scholar 

  69. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21, 1087–1092

    Google Scholar 

  70. Molison, D (1972) Conjecture on the spread of infection in two dimensions disproved. Nature 240 (22), 467–468

    Google Scholar 

  71. Mombach, J.C.M., Glazier, J.A., Raphael, R.C. and Zajak. M (1995) Quantitative comparison between differential adhesion models and cell sorting in the presence and absence of fluctuations. Phys Rev Lett 75 (11), 2244–2247

    Google Scholar 

  72. Mombach, J.C.M., Glazier, J (1996) Single cell motion in aggregates of embryonic cells. Phys Rev Lett 76 (16), 3032–3035

    Google Scholar 

  73. Nicolis, G. and Prigogine, I., (1967) Self-organization in nonequilibrium systems.(Wiley, New York)

    Google Scholar 

  74. Odell, G.M., Oster, G., Alberch, P. and Burnside, B (1981) The mechanical basis of morpho-genesis. Dev Biol 85, 446–462

    Google Scholar 

  75. Öhlschläger, K (1989) On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probab Th Rel Fields 82, 565–586

    Google Scholar 

  76. Palsson, E. and Othmer, H.G (2000) A model for individual and collective cell movement inDictyostelium discoideum Proc Nat Acad Sc 12 (19), 10448–10453

    Google Scholar 

  77. Palsson, E (2001) A three-dimensional model of cell movement in multicellular systems. Future Generation Computer Systems 17, 835–852

    MATH  Google Scholar 

  78. Paulus, U., Loeffler, M., Zeidler, J., Owen, G. and Potten, C.S (1993) The differentiation and lineage development of goblet cells in the murine and small intestinal crypt: experimental and modeling studies. J Cell Sci 104 473–484

    Google Scholar 

  79. Potten, C.S., Loeffler, M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110 1001–1020

    Google Scholar 

  80. Prusinkiewicz, P (1994) Visual models of morphogenesis. Artificial Life 1 64–74

    Google Scholar 

  81. Qi, A.-S., Zheng, X., Du, C.-Y., and An, B-S (1993) A cellular automaton model of cancerous growth. J Theor Biol 161 1–12

    Google Scholar 

  82. Ransom, R. and Matela, R.J. (1984) Computer modelling of cell division during development using a topological approach. J Embryol exp Morph Supplement 83 233–259

    Google Scholar 

  83. Rapaport, D.C (1995) The art of molecular dynamics simulation.(Cambridge Univ. Press)

    Google Scholar 

  84. Richardson, D (1973) Random growth in a tessellation. Proc Camb Phil Soc 74 515–528

    MATH  Google Scholar 

  85. Rivet, J.P., and Boon, J.P (2001) Lattice Gas Hydrodynamics.Cambridge University Press

    MATH  Google Scholar 

  86. Savill, N. J., Hogeweg, P (1997) Modelling morphogenesis: From single cells to crawling slugs. J Theor Biol 184 229–235

    Google Scholar 

  87. Schienbein, M., Franke, K., and Griller, H (1994) Random walk and directed movement: comparison between inert particles and sel-organized molecular machines. Phys Rev E 49(6) 5462–5471

    Google Scholar 

  88. Spohn, D (1991) Large scale dynamics of interacting particles. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  89. Steinberg, M.S (1964) The problem of adhesive selectivity in cellular interactions. In:Cellular membranes in Development.(M. Locke, editor) Academic Press, New York, 321–366

    Google Scholar 

  90. Steinberg, M.S (1970) Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierachy among populations of embryonic cells. J Exp Zool 173 395–434

    Google Scholar 

  91. Stekel, D., Rashbass, J., Williams, E.D (1995) A computer graphic Simulation of squamous epithelium. J Theor Biol 175 283–293

    Google Scholar 

  92. Stevens, A. and Schweitzer, F (1997) Aggregation induced by diffusing and non-diffusing media. In: Dynamics of Cell and Tissue Motion. (W.Alt, A.Deutsch, and G. Dunneds.) Birkhäuser, Basel, Switzerland, 183–192

    Google Scholar 

  93. Stevens, A (2000a) A stochastic cellular automaton modeling gliding and aggregation of myxobacteria. SIAM J APPL MATH 61 (1) 172–182

    MathSciNet  MATH  Google Scholar 

  94. Stevens, A (2000b) The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J Appl Math 61 (1) 183–212

    MathSciNet  MATH  Google Scholar 

  95. Stott, E. L., Britton, N. F., Glazier, J. A., Zajac, M (1999) Stochastic simulation of benign avascular tumor growth using the Potts model. Mathematocal and computer Modelling 30 183–198

    Google Scholar 

  96. Townes, P.L. and Holfreter, J (1955) Directed movements and selective adhesion of embryonic amphibian cells. J Exp Zool 128 3–120

    Google Scholar 

  97. Turner, S. and Sherrat, J.A (2002) Intercellular adhesion and cancer invasion: A discrete simulation using the extended Potts model. J Theor Biol 216 (1) 85–100

    Google Scholar 

  98. van Kampen, N.G (1992) Stochastic Processes in Physics and Chemistry.Elsevier, North Holland

    Google Scholar 

  99. Vawer, A. and Rashbass, J (1997) The biological Toolbox: A computer program for simulating basic biological and pathological processes. Computer Methods and Programs in Biomedicine 22, 203–211

    Google Scholar 

  100. Wang, C.Y., Liu, P.L., and Bassingthwighte, J.B (1995) Off-lattice Eden-C cluster growth model. J Phys: Math Gen 28, 2141–2147

    MATH  Google Scholar 

  101. Weliky, M. and Oster, G (1990) The mechanical basis of cell rearrangement. I. Epithelial morphogenesis during Fundulus epiboly. Development 109, 373–386

    Google Scholar 

  102. Weliky, M., Minsuk, S., Keller, R., Oster, G (1991) Notochord morphogenesis inXenopus laevis: simulation of cell behavior underlying tissue convergence and extension. Development 113, 1231–1244

    Google Scholar 

  103. Williams, T., Bjerknes, R (1972) Stochastic model for abnormal clone spread through epithelial basal layer. Nature 236, 19–21

    Google Scholar 

  104. Wolf, D (1989) Fractal Growth. In: Comp utersimulations in PhysicsResearch Centre Juelich [in German]

    Google Scholar 

  105. Wolpert, L (1998) Principles of Development. Oxford Univ. Press, Oxford

    Google Scholar 

  106. Zajac, M., Jones, G.L. and Glazier, J.A (2000) Model of convergent extension in animal morphogenesis. Phys Rev Lett 85 (9), 2022–2025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Drasdo, D. (2003). On Selected Individual-based Approaches to the Dynamics in Multicellular Systems. In: Alt, W., Chaplain, M., Griebel, M., Lenz, J. (eds) Polymer and Cell Dynamics. Mathematics and Biosciences in Interaction. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8043-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8043-5_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9417-3

  • Online ISBN: 978-3-0348-8043-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics