Skip to main content

Abstract

The Lusin N-property is well known as a criterion for validity of theorems on change of variables in integral. Here we consider related properties motivated by the coarea formula. They also imply a generalization of Eilenberg’s inequality. We prove them for functions with gradient in the Lorentz space Lm,1. This relies on estimates of Hausdorff content of level sets for Sobolev functions and analysis of their Lebesgue points. A significant part of the presented results has its origin in a joint work with David Swanson and William P. Ziemer.

Article Footnote

1 The research is supported in part by the Research Project MSM 113200007 from the Czech Ministry of Education, Grant No. 201/00/0767 from the Grant Agency of the Czech republic (Ga ČR) and Grant No. 165/99 from the Grant Agency of Charles University(GA UK)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bagby and W. P. Ziemer, Pointwise differentiability and absolute continuity Trans. Amer. Math. Soc. 191 (1974), 129–148.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Eilenberg, On ϕ measures, Ann. Soc. Pol. de Math. 17 (1938), 251–252.

    Google Scholar 

  3. H. Federer Geometric Measure Theory Springer-Verlag, New York, Heidelberg, 1969.

    MATH  Google Scholar 

  4. H. Federer and W. P. Ziemer, The Lebesgue set of a function whose partial derivatives are p-th power summable Indiana Univ. Math. J. 22 (1972), 139–158.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. H. Fleming, Functions whose partial derivatives are measures Illinois J. Math. 4 (1960), 452–478.

    MathSciNet  MATH  Google Scholar 

  6. P. Hajlasz Sobolev mappings co-area formula and related topics Proceedings on Analysis and Geometry, Sobolev Institute Press, Novosibirsk, 2000, 227–254.

    Google Scholar 

  7. J. Kauhanen, P. Koskela and J. Maly, On functions with derivatives in a Lorentz space Manuscripta Math. 100 1(1999), 87–101.

    Google Scholar 

  8. T. Kilpelainen and J. Maly, The Wiener test and potential estimates for quasilinear elliptic equations Acta Math. 172 (1994), 137–161.

    Article  MathSciNet  Google Scholar 

  9. J. Malý Sufficient Conditions for Change of Variables in Integral Proceedings on Analysis and Geometry, Sobolev Institute Press, Novosibirsk, 2000, 370–386.

    Google Scholar 

  10. J. Malý Wolff potential estimates of superminimizers of Orlicz type Dirichlet integrals Preprint MATH-KMA, Charles University, Praha 2002.

    Google Scholar 

  11. J. Malý and 0. Martio, Lusin?s condition (N) and mappings of the class W1,n J. Reine Angew. Math. 458 (1995), 19–36.

    Google Scholar 

  12. J. Malý, D. Swanson, and W. P. Ziemer Coarea formula for Sobolev mappings Preprint MATH-KMA-2001/68, Charles University, Praha.

    Google Scholar 

  13. J. Maly, D. Swanson, and W. P. Ziemer Fine behavior of functions with gradients in a Lorentz space in preparation.

    Google Scholar 

  14. J. Malý and W. P. Ziemer Fine regularity of solutions of elliptic partial differential equations AMS Mathematical Surveys and Monographs Vol. 51, Amer. Math. Soc., Providence, 1997.

    MATH  Google Scholar 

  15. M. Marcus and V. J. Mizel, Transformations by functions in Sobolev spaces and lower semicontinuity for parametric variational problems Bull. Amer. Math. Soc. 79 no. 4 (1973), 790–795.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. G. Maz’ya and V. P. Havin, Nonlinear potential theory Uspekhi Mat. Nauk 27 (1972), 67–138. English translation: Russian Math. Surveys 27 (1972), 71–148.

    Article  Google Scholar 

  17. Yu. G. Reshetnyak, On the concept of capacity in the theory of functions with generalized derivatives (Russian) Sibirsk. Mat. Zh. 10 (1969), 1109–1138. English translation:Siberian Math. J. 10 (1969), 818–842.

    Article  MATH  Google Scholar 

  18. R. Van der Putten, On the critical-values lemma and the coarea formula (Italian)Boll. Un. Mat. Ital. B. 6 3 (1992), 561–578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Malý, J. (2003). Coarea Properties of Sobolev Functions. In: Haroske, D., Runst, T., Schmeisser, HJ. (eds) Function Spaces, Differential Operators and Nonlinear Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8035-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8035-0_26

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9414-2

  • Online ISBN: 978-3-0348-8035-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics