Skip to main content
  • 673 Accesses

Abstract

Recent years have witnessed an increasing interest of researchers working on function spaces, and on related fields, about optimal embeddings of Sobolev type, as demonstrated by a number of papers on this topic. One of the ancestors of these kind of results may be considered a sharpened version of the classical Sobolev inequality, independently proved by O’Neil [23] and by Peetre [25], which can be stated as follows. LetG be an open subset of ℝn,n> 2, and let Wo lP(G), 1 <p < ∞, be the first order Sobolev space of those real-valued weakly differentiable functions inGdecaying to 0 on∂G whose gradient belongs toL p(G). If 1 <p < n, then a constantC exists such that

$$ \left\| u \right\|_{L^{p^* ,p} (G)} \leqslant C\left\| {\left| \nabla \right.} \right.\left. {\left. u \right|} \right\|_{L^p (G)}$$
((1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. R.A. Adams, On the Orlicz-Sobolev imbedding theorem J. Funct. Anal. 24 (1977), 241–257.

    Article  MATH  Google Scholar 

  2. A. Alvino, V. Ferone, and G. Trombetti, Moser-type inequalities in Lorentz spaces Potential Anal. 5 (1996), 273–299.

    MathSciNet  MATH  Google Scholar 

  3. C. Bennett and K. Rudnick, On Lorentz-Zygmund spaces, Dissert. Math. 175 (1980), 1–72.

    Article  MathSciNet  Google Scholar 

  4. C. Bennett and R. Sharpley, “Interpolation of operators”, Academic Press, Boston, 1988.

    MATH  Google Scholar 

  5. O.V. Besov, V.P. Il’in and S.M. Nikolskii, 12.Integral representations of functions and embedding theorems, Nauka, Moscow, 1975; English translation: Wiley, 1979.

    Google Scholar 

  6. H. Brezis and S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities Comm.Part. Diff. Eq. 5 (1980), 773–789.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.E. Brothers and W.P. Ziemer, Minimal rearrangements of Sobolev functions J. Reine Angew. M ath 384 (1988), 153–179.

    MathSciNet  MATH  Google Scholar 

  8. A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces Indiana Univ.Math.J.45(1996) 39–65

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Cianchi Bounde d ness of solutions to variational problems under general growth conditionsComm.Part.Diff.Eq.22 (1997)1629–1646.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Cianchi, Optimal Orlicz-Sobolev embeddings, preprint.

    Google Scholar 

  11. [ D.E. Edmunds, P. Gurka, and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spacesIndiana Univ. Math. J. 44 (1995), 19–43.

    MathSciNet  MATH  Google Scholar 

  12. D.E. Edmunds, P. Gurka, and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces Indiana Univ. Math. J. 44 (1995), 19–43.

    MathSciNet  MATH  Google Scholar 

  13. [ D.E. Edmunds, P. Gurka, and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces Indiana Univ. Math. J. 44 (1995), 19–43.

    Article  MathSciNet  MATH  Google Scholar 

  14. D.E. Edmunds, R.A. Kerman and L. Pick, Optimal Sobolev embeddings involving rearrangement invariant quasi-norms J. Funct. Anal. 170 (2000), 307–355.

    Article  MathSciNet  MATH  Google Scholar 

  15. [ D.E. Edmunds, P. Gurka, and B. Opic, Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces Indiana Univ. Math. J. 44 (1995), 19–43.

    MathSciNet  MATH  Google Scholar 

  16. N. Fusco, P.L. Lions and C. Sbordone, Sobolev embedding theorems in borderline cases Proc. Amer. Math. Soc. 124 (1996), 561–565.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.L. Goldman and R. Kerman, The dual for the cone of decreasing functions in a weighted Orlicz class and the associate of an Orlicz-Lorentz space Proc. Amer. Math. Soc. to appear.

    Google Scholar 

  18. L. Greco and G. Moscariello, An embedding theorem in Lorentz-Zygmund spaces Potential Anal. 5 (1996), 581–590.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Hansson, Imbedding theorems of Sobolev type in potential theory Math. Scand. 45 (1979), 77–102.

    MathSciNet  MATH  Google Scholar 

  20. V.I. Kolyada, On the differential properties of the rearrangements of functions, in “Progress in Approximation Theory” (A.A. Gonchar and E.B. Saff, Eds.), pp. 333–352, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  21. V.M. Maz’ya, “Sobolev spaces”, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  22. S.J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces Studia Math. 103 (1992), 161–189.

    MathSciNet  MATH  Google Scholar 

  23. R. O’Neil, Convolution operators in L(p q) spacesDuke Math. J. 30 (1963), 129–142.

    Article  MathSciNet  MATH  Google Scholar 

  24. Yu.V. Netrusov, Embedding theorems for Lizorkin-Triebel spaces Notes of Scientific Seminar LOMI 159 (1987), 103–112. (Russian)

    MATH  Google Scholar 

  25. J. Peetre, Espaces d’interpolation et theoreme de SoboleffAnn. Inst. Fourier 16(1966), 279–317.

    Article  MathSciNet  MATH  Google Scholar 

  26. S.I. Pohozhaev, On the embedding Sobolev theorem for pl = n Doklady Conference Section Math. Moscow Power Inst. (1965), 158–170 (Russian).

    Google Scholar 

  27. L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces Boll. Un. Mat. Ital. ( 8 ) 1 -B (1998), 473–500.

    Google Scholar 

  28. G. Talenti, An embedding theorem, in “Partial differential equations and the calculus of variations, Vol. II”, pp. 919–924, Progr. Nonlinear Differential Equations Appl., 2, Birkhauser, Boston, 1989.

    Google Scholar 

  29. A. Torchinsky, Interpolation of operators and Orlicz classes Stadia Math. 59 (1976), 177–207.

    MathSciNet  MATH  Google Scholar 

  30. N.S. Trudinger, On imbeddings into Orlicz spaces and some applications J. Math. Mech. 17 (1967), 473–483.

    MathSciNet  MATH  Google Scholar 

  31. V.I. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations Soviet Math. Doklady 2 (1961), 746–749.

    MATH  Google Scholar 

  32. W.P. Ziemer, “Weakly differentiable functions”, Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Cianchi, A. (2003). Sharp Summability of Functions From Orlicz-Sobolev Spaces. In: Haroske, D., Runst, T., Schmeisser, HJ. (eds) Function Spaces, Differential Operators and Nonlinear Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8035-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8035-0_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9414-2

  • Online ISBN: 978-3-0348-8035-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics