Skip to main content
  • 195 Accesses

Abstract

By comparing potential and actual risks in both fields of agriculture, with or without GMOs, we need a clear view of the similarities and differences. Raamsdonk (1993) has given a scheme of gene flow, whether natural or influenced by human activity. It clearly shows that most pathways of gene flow are both natural and also strongly influenced by agriculture and breeding. But there is one notable exception: Transformation is something quite new. It is now possible to jump over the limits of species, genera and even families and orders in a much easier way. Let’s not forget that there is something universal about the sequences used for transformation and often lay persons are puzzled by expressions like “a fish gene” for instance. They have not the knowledge how to judge the novelty of such transformation. But this statement also counts for the experts: position effects and pleiotropic effects after transformation have to be considered in all cases, this is why we need to think about new risk assessment methods for genetic engineering. But we should always be aware of the fact that classical breeding is also dealing with the introduction of genes to a crop plant. The big difference is that these genes introduced in classical breeding are always belonging to some relatively close parents, transformation is always done in the relatively narrow environment of interbreeding species groups. But again we have to consider all cases in classical breeding, where single gene mutations or the change of only a small number of genes has dramatically changed morphology, growth and yield of a crop, especially in the case of maize and wheat. Considering the possible escape of transgenes to wild relatives there are parallels between classical breeding and genetic engineering regarding the processes of vertical gene flow, but the results may be different in the case of a possible escape of a novel transgene having new ecological potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott R (1994a) Ecological risks of transgenic crops. Tree 9: 280–281

    CAS  Google Scholar 

  • Abbott R (1994b) Reply to Thacker JRM. Transgenic plants. Tree 9: 486

    CAS  Google Scholar 

  • Adams WT, Griffin AR, Moran GF (1992) Using paternity analysis to measure effective pollen dispersal in plant populations. The American Naturalist 140 (5): 762–780

    Article  CAS  Google Scholar 

  • Ahl Goy P, Chasseray E, Duesing J (1994) Field trials of transgenic plants: an overview. Agio-Industry hi-tech March/April, 10–15

    Google Scholar 

  • Ahl Goy P, Duesing J (1995) From Plots to Plots: Genetically Modified Plants on Trial. Biotechnology 13: 454–458

    Article  Google Scholar 

  • Alit Goy P, Duesing J (1996) Assessing the Environmental Impact of Gene Transfer to Wild Relatives. Biotechnology 14: 39–40

    Article  Google Scholar 

  • Altmann M (1994) Schlussfolgerungen aus dem Technikfolgenabschätzungs-Verfahren (TA) zum Anbau von Kulturpflanzen mit gentechnisch erzeugter Herbizidresistenz. Gaia, 3(6)

    Google Scholar 

  • Altmann M and Ammann K (1992) Gentechnologie im gesellschaftlichen Spannungsfeld: Züchtung transgener Kulturpflanzen. Gaia, 1(4): 204–213

    Google Scholar 

  • Ammann K (1995) Gentechnisch veränderte Kulturpflanzen in der Umwelt: Chancen und Probleme — Die Suche nach gangbaren Wegen. In: Erbersdohler HF, Hammes W, Jany KD (eds.): Gentechnik und Ernährung. Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, 161–195

    Google Scholar 

  • Ammann K (1995) Die ökologischen Risiken der Gentechnologie und wie wir damit umgehen können. In: Behrens, M, Meyer-Strumberg S, Simonis G (Hrsg), Gentechnik und Nahrungsmittelindustrie. Mensch undTechnik, Sozialvertragliche Technikgestaltung. p.177–190

    Chapter  Google Scholar 

  • Ammann K, Felber F, Keller J, Jacot Y, Kupfer Ph, Rufener P, Savova D (1994) Dynamic biogeography and natural hybridization of selected weedy species in Switzerland. Symposium “Gene Transfer: Are Wild Species in Danger?”, Le Louverain, Switzerland, Nov.1994 Environmental Documentation, Federal Office of Environment, Forests and Landscape (FOEFL), 12: 36–39

    Google Scholar 

  • Anderson C (1992) Researchers ask for help to save key biopesticide. News. Nature 355: 661

    Google Scholar 

  • Anderson E (ed.) (1949) Introgressive hybridisation. John Wiley & Sons, Inc., New York, Chapman & Hall, Limited, London

    Google Scholar 

  • Andow DA (1994) Community response to transgenic plant release: using mathematical theory to predict effects of transgenic plants. Molecular Ecology 3:65–70

    Article  Google Scholar 

  • Arnold ML and Hodges SA (1995) Are natural hybrids fit or unfit relative to their parents ? Tree. 10 (2): 67–71

    CAS  Google Scholar 

  • Ashman TL, Galloway LF, Stanton ML (1993) Apparent vs. effective mating in an experimental population of Raphanus sativus. Oecologia 96: 102–107

    Article  Google Scholar 

  • Austin RB, Flavell RB, Henson IE, Lowe HJB (eds.) (1986) Molecular biology and crop improvement. Cambridge University Press

    Book  Google Scholar 

  • Bainton JA (1993) Considerations for release of herbicide resistant crops - Volunteer crops as weeds. Aspects of Applied Biology 35: 45–52

    Google Scholar 

  • Baker HG (1967) Characteristics and modes of origin of weeds. In: HG Baker, Stebbins GI. (eds.) The genetics of colonizing species. Academic Press, New York and London, 147–172

    Google Scholar 

  • Baker HG (1974) The evolution of weeds. Ann. Rev. of Ecology and Systematics 5: 1–24

    Article  Google Scholar 

  • Barrett SCH (1983) Crop mimicry in weeds. Econ. Bat, 37 (3): 255–282

    Article  Google Scholar 

  • Bartsch D (1995) Ökologische Begleitforschung zu rizomaniaresistenten Zuckerrüben. In: Albrecht S, Beusmann V (eds.): Ökologie transgener Nutzpflanzen, Gentechnologie - Chancen und Risiken. Campus Verlag, Frank furt J New York, 31: 81–98

    Google Scholar 

  • Bartsch D, Sukopp H, Sukopp U (1993) Introduction of plants with special regard to cultigens running wild. In: Wöhrmann K, Tomiuk J (eds.): Transgenic organisms. Birkhäuser Verlag Basel/Switzerland, 135–151

    Google Scholar 

  • Bazin Mi and Lynch JM (eds.) (1995) Environmental Gene Release. Models, Experiments and Risk Assessment. Chapman & Hall, New York, 166p

    Google Scholar 

  • Becker T (1951) Siebenjährige blütenbiologiische Studien an den Cruziferen Brassicanapus L., Brassica rapa L., Brassica oleracea L., Raphanus L. und Sinapis L.. Teil I. Zeitschrifi fier Pflanzenzüchtung, 29: 222–240

    Google Scholar 

  • Bevan MW, Harrison BD, Leaver CJ (eds.) (1995) The Production and Uses of Genetically Transformed Plants, Chapman & Hall, New York

    Google Scholar 

  • Beversdorf WD, Scott LS (1987) Development of Triazine Resistance in Crops by Classic Plant Breeding. Weed Science 35: 9–11

    CAS  Google Scholar 

  • Blanck KD (1991) Raps in der Fruchtfolge nicht überziehen! ln: Rapsanbau far Könner - Bestände gezielt aufbauen und schützen. Top agrar - Das Magazin firr moderne Landwirtschaft. Landwirtschaftsverlag Münster-Hiltrup, 94–98

    Google Scholar 

  • Bottermann J, Leemans J (1988) Engineering of Herbicide Resistance in Plants. Biotechnology and Genetic Engineering Reviews 6: 321–341

    Google Scholar 

  • Boudry P, Märchen M, Samitov-Laprade P, Vernet P, Van Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide-resistant transgenic sugar beets. Theor. Appl. Genet, 87: 471–478

    Article  Google Scholar 

  • Boyle-Makowski RMD (1985) Pollinator activity and abiotic factors in an apple orchard. The Canadian Entomologist 117: 1509–1521

    Article  Google Scholar 

  • Crawley MJ (1992) The comparative ecology of transgenic and conventional crops. In: R Casper, Landsmann J (eds.): 2nd international symposium on the biasafety results of field tests of genetically modified plants and microorganisms. May 11–14, 1992, Goslar, Germany, 43–52

    Google Scholar 

  • Crawley MJ, Halls RS, Rees M, Kohn D, Buxton J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature, 363 (6430): 620–623

    Article  Google Scholar 

  • Curtis H (ed.) (1983) Biology. New York: Worth Publishers, Inc.

    Google Scholar 

  • Cussans GW (1978) The problem of volunteer crops and some possible means of their control. Proc. British Crop Protection Conference. Weeds, 3: 915–921

    Google Scholar 

  • Dale P (1992) Spread of Engineered Genes to Wild Relatives. Plant Physiol 100, 13–15

    Article  CAS  Google Scholar 

  • Dale Pi, Parkinson R, Scheffler JA (1993) Dispersal of genes by pollen - the PROSAMO-Project. British Crop Protection Council Monograph 55: 133–143

    Google Scholar 

  • Dumas C (1984) Ecologic florale et pollinisation. In: Pesson P, Louveaux J (eds.). Pollinisation et production végétales INRA, Paris, 31–46

    Google Scholar 

  • Eckert JE (1933) The flight range of honeybee. J. Agric. Res. 47: 257–285

    Google Scholar 

  • Eijlander R (1989) Transgene biet, ja of nee. Prophyra, 43: 232–233

    Google Scholar 

  • Ellstrand N (1988) Pollen as a vehicle for the escape of engineered genes ? Trends in Ecology and Evolution 3: S30–S32

    Article  CAS  Google Scholar 

  • Ellstrand N (1992) Gene flow by pollen: implications for plant conservation genetics. Oikos, 63: 77–86.

    Article  Google Scholar 

  • Ellstrand N, Marshall D (1985) lnterpopulation gene flow by pollen in wild radish, Raphanus sativus. American Naturalist 126: 606–616

    Article  Google Scholar 

  • Ellstrand N, Devlin B, Marshall D (1989) Gene flow by pollen into small populations: data from experimental and natural stands of wild radish. Proceedings of the National Academy ofSciences 86: 9044–9047

    Article  CAS  Google Scholar 

  • Feitelson J Payne J, Kim L (1992) Bacillus thuringiensis:insects and beyond. Bio/Technology 10: 438–442

    Google Scholar 

  • Ferre J. Real MD, Van Rie J, Jansens S, Peferoen M (1991) Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylosrella is due to a change in a midgut membrane receptor. Proc. Nat. Acad. Sri. USA 88: 5119–5123

    Article  CAS  Google Scholar 

  • Fitter A, Perrins J, Williamson M (1990) Weed probability challenged. Bio/Pechnology 8: 473

    Article  Google Scholar 

  • Fredshavn JR, Poulsen GS (1995) Competitiveness of transgenic oilseed rape. Transgenic Research 4: 142–148

    Article  CAS  Google Scholar 

  • Friedt W (1995) Oral presentation ‘Erwtütschte und unerwünschte lnhaltsstoffe - eine Herausforderung fir den Pflanzenbau’ at the annual meeting 1995 of the Swiss Society of Agronomy in Bern, Switzerland

    Google Scholar 

  • Frietema De Vries FT (1996) Cultivated plants and the wild flora. Effect analysis by dispersal codes Thesis. Rijksherbarium, Hortus Botanicus, Leiden, 100p

    Google Scholar 

  • Frietema De Vries FT, Van der Meidjen R, Bradenburg WA (1994) Botanical files on lettuce (Lactuca saliva L.) for gene flow between wild and cultivated lettuce (Lactuca saliva L. Including L. Serriola L., Compositae) and the generalized implications for risk assessment on Genetically Modified Plants, Gorteria suppl. 2, 44p

    Google Scholar 

  • Gabriel W (1993) Technologically modified genes in natural populations: some skeptical remarks on risk assessment from the view of population genetics. In: Wöhrmann K, Tomiuk J (eds.): Transgenic Organisms Birkhäuser, Basel, 109–116

    Google Scholar 

  • Graner A, Wenzel G (1993) Chancen und Risiken der Grünen Gentechnik. Pfanzenschutz-Praxis 4: 20–22

    Google Scholar 

  • Grant V (ed.) (1981) Plant speciation. Second edition. New York, Columbia University Press

    Google Scholar 

  • Gray A (1986) Green Industry Biotechnology Platform 1995. Extracts from GIBiP Database on Field Trials 1986 -.1994, G95/129

    Google Scholar 

  • Gregorius HR, Steiner W (1993) Gene transfer in plants as a potential agent of introgression. ln: K Wöhrmann, Tomiuk J (eds.), Transgenic Organisms Birkhäuser, Basel 1993, 109–116

    Google Scholar 

  • Gressel J, Regev Y, Malkin S, Kleifeld Y (1983) Characterization of an s-triazine-resistant biotype of Brachypodium distachyon. Weed Science 32: 450–456

    Google Scholar 

  • Gressel J, Kleifeld Y (1994) Can wild species become problem weeds because of herbicide resistance? Brachypodium distachyon: a case study. Crop protection 13 (8): 563–566

    Article  Google Scholar 

  • Hadley HH, Openshaw SJ (1980) Interspecific and intergeneric hybridization. In: Fehr WR, Hadley HI-I (eds.). Hybridization of crop plants American Society of Agronomy-Crop Science Society of America, Madison, 133–159

    Google Scholar 

  • Halliun d’ K, Sottermann J, Greef de W (1990) Engineering of herbicide resistant alfalfa and evaluation under field conditions. Crop Science 30: 866–871

    Article  Google Scholar 

  • Halluin DK, Bossut M, Bonne E, Mazur B, Leemans J, Botterman J (1992) Transformation of sugarbeet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Biofechnology 10: 309–314

    Article  Google Scholar 

  • Harding K, Harris PS (1994) Risk assessment of the release of genetically modified plants: a review Ministry of Agriculture. Fisheries and Food (ed.), London, 54pp

    Google Scholar 

  • Harlan JR (1965) The possible role of weed races in the evolution of cultivated plants. Euphytica 14: 173–176

    Article  Google Scholar 

  • Harlan JR, De Weet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27: 311–325

    Article  Google Scholar 

  • Hartmann E, Schuldet H, Kübler R, Konold W (eds.) (1994) Neophyten - Biologie, Verbreitung, Kontrolle ausgewählter Arten Ecomed. Landsberg, Germany, 302p

    Google Scholar 

  • Herrmann G (1987) Biochemische, physiologische und immunologische Untersuchungen zum Herbizid-Bindeprotein aus Thylakoidmembranen von einzelligen Algen und höheren Pflanzen Dissertation Universität Konstanz. 1.Aufl.

    Google Scholar 

  • Heywood V and Zohary D (1995) A Catalogue of the Wild Relatives of Cultivated Plants Native to Europe. Flora Mediterranea 5: 375–415

    Google Scholar 

  • Hojland JG, Pedersen S (eds.) (1994) Carrot (Daucus carota L. ssp. salivas (Hoffm.1 Arcangeli). Dispersal, establishement and interactions with the environment The National Forest and Nature Agency, Copenhagen, Denmark. 67p

    Google Scholar 

  • Holm L, Doll J, Holm E, Pancho J, and Herberger J (eds.) (1977) The world’s worst weeds. Distribution and biology John Wiley & Sons, Inc.

    Google Scholar 

  • Holzeier W (1982) Concepts, categories and characteristics of weeds. ln: Holzner W, Numata N (eds.): Biology and ecology of weeds, Dr. W. Junk Publishers, The Hague, 3–20

    Google Scholar 

  • Hoyle R (1993) Herbicide-resistant crops are no conspiracy. BiG/TECHNOLOGY,1 783–78

    Google Scholar 

  • Jacot Y and Jacot P (1994) Application du génie génétique à l’agriculture: Evaluation des dangers potentiels pour la flore suisse. Cahier de l’Environnement, Organismes 235, 77p

    Google Scholar 

  • Jörgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (B. rapa subsp. campestris] (Brassicaceae): a risk of growing genetically modified oilseed rape. American Journal of Botany 81(12): 1620–1626

    Article  Google Scholar 

  • Keeler K, Turner C (1991) Management of Transgenic Plants in the Environment. In: M Levin, Strauss H (eds.): Risk Assessment in Genetic Engineering Mc Graw Hill, 189–218

    Google Scholar 

  • Kirkpatrick KJ, Wilson HD (1988) Interspecific geneflow in Cucurbita: C. texana vs. C. pepo. Amer. J. Bot 75: 519–527

    Article  Google Scholar 

  • Kjellsson G, Simonsen V (eds.) (1994) Methods for risk assessment of transgenic plants T. Competition, establishment and ecosystem effects. Birkhäuser, Basel

    Google Scholar 

  • Kjellsson G, Simonsen V, Ammann K (eds.) (1997) Methods for risk assessment of transgenic plants ll. Pollination, Gene-transfer and Population impact. Birkhäuser, Basel

    Google Scholar 

  • Lambelet-Haueter C (1990) Mauvaises herbes et flore anthropogéne. 1. Définitions, concepts et caractéristiques écologiques. Saussurea 21:47–73

    Google Scholar 

  • Lambelet-Haueter C (1991) Mauvaises herbes et flore anthropogène. 11. Classifications et catégories. Saussurea 22: 49–81

    Google Scholar 

  • Lamberti F, Waller JM, Van der Graaff NA (eds.) (1982) Durable Resistance in Crops Plenum Press New York and London

    Google Scholar 

  • Langevin SA, Clay K, Grace JB (1990). The incidence and effects of hybridisation between cultivated rice and its related weed red rice (Oryza saliva L.). Evolution, 44: 1000–1108

    Article  Google Scholar 

  • Leisinger K (ed.) (1991) Gentechnik fir die Dritte Welt ? Birkhsuser, Basel

    Google Scholar 

  • Levin D (1978) The origin of isolating mechanisms in flowering plants. In: M Hecht, Steere W, Wallace B (eds.): Evolutionary Biology,Plenum Press, New York, 185–317

    Google Scholar 

  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol. Biol 7: 139–220

    Article  Google Scholar 

  • Lupi C (1995) Genetic engineering for plant protection - Methods, state of the art and applications. Technology assessment of pest resistant transgenic plants, report 1. BATS, 60p

    Google Scholar 

  • Madsen KH (1994) Weed management and impact on ecology of growing glyphosate tolerant sugarbeets (Beta vulgaris L.). Ph.D.-Thesis. The Royal Veterinary and Agricultural University, Weed Science, Copenhagen, Denmark and MARIBO Seed, Holeby, Denmark, 61p

    Google Scholar 

  • Mangelsdorf PC (1961) lntrogression in Maize. Euphytica 10: 157–168

    Google Scholar 

  • McGaughey WH (1985) Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193–194 McGaughey WH, William ME, Wilson E (1992) Managing Insect Resistance to Bacillus thuringiensis Toxins. Science 258: 1451–1455

    Article  Google Scholar 

  • Meer Van der PJ (eds.) (1993) Proceedings (working document) Pan-European conference on the potential longterm ecological impacts of the release of genetically modified organisms Council of Europe, Strasbourg

    Google Scholar 

  • Mikkelsen TR, Andersen B, Jorgensen RB (1996) The risk of crop transgene spread. Nature 380: 7

    Article  Google Scholar 

  • Mizukami Y, Ma H (1992) Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell 71: 119–131

    Article  CAS  Google Scholar 

  • Newmann SM (1990) Pollen transfer from transgenic plants: Concepts for risks assessment and data requirements. AAASJEPA Environmental Science and Engineering Fellow 1–40

    Google Scholar 

  • NRC Report on Field Testing (1989) National Research Council of the National Academy of Sciences. Committee on scientific evaluation of the introduction of genetically modified micro-organisms and plants into the environment. Field testing genetically modified organisms: Framework for decisions National Academy Press, Washington, D.C., 170 p

    Google Scholar 

  • OECD (1993a) Field releases of transgenic plants, 1986–1992 an analysis. OECD, Paris, 39p

    Google Scholar 

  • OECD (1993b) Safety considerations for biotechnology: Scale-up of crop plants. OECD, Paris, 41p

    Google Scholar 

  • Oka HI, Morishima H (1982) Ecological genetics and the evolution of weeds. In: W Holzner. Numata N (eds.): Biology and ecology ofweeds Dr. W. Junk Publishers, The Hague, 73–89

    Google Scholar 

  • Omirulleh S, Abrahaqm M, Golovkin M, Stefanov J, Karabaev MK, Mustardy L, Morocz S. Dudits D (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol. Biol 21: 415–428

    Article  CAS  Google Scholar 

  • Oxtoby E, Huges MA (1990) Engineering herbicide tolerance into crops. TIBTECH 3/8: 61–65

    Article  Google Scholar 

  • Paul EM, Lewis GB, Dunwell JM (1991) The pollination of genetically modified plants. Acta Horticulturae 288: 425–429

    Google Scholar 

  • Pham-Délègue MH, Picard-Nizou AL, Amorld G, Grison R, Toppan A, Olsen L, Masson C (1992) Impact of genetically modified rapeseed on insect pollinators (honeybees). In: R Casper, Landsmann J (eds.): Proceedings of the 2“’ International Symposium on „the biosafety results of field tests of genetically modified plants and micro-organisms” May 11–14, 1992, Goslar, Germany

    Google Scholar 

  • Pickersgill B (1981) Biosystematics of crop-weed complexes. Kulturpflanze XXIX: 377–388

    Google Scholar 

  • Paulsen GS, Fredshavn J (1995) Assessing competitive ability of transgenic oilseed rape. Workshop on Brassica napus, Helsingör, 20–23 March 1995, Denmark, L13

    Google Scholar 

  • Pouvreau A (1984) Production de semences potagères. In: P. Pesson et J. Louveaux (eds.): Pollinisation et productions végétales INRA, Paris. 471–496

    Google Scholar 

  • Raamsdonk van LWD (1993) Wild and cultivated plants: the paralellism between evolution and domestication. Evolutionary Trends in Plants 7(2): 73–84

    Google Scholar 

  • Rauher R (1977) Evolution von llnkräutem. Ergebnisse der 1. Deutschen Arbeitsbesprechung über Fragen der Unkrautbiologie und -bekämpfung, 1977, Stuttgart, Hohenheim. Zeitschrii t fir Pflanzenkrankheiten und Pflanzenschutz 8: 37–55

    Google Scholar 

  • Raybould A, Gray A (1993) Genetically modified crops and hybridization with wild relatives: A UK perspective. Journal of 4pplied Ecology 30: 199–219

    Article  Google Scholar 

  • Raybould A, Gray A (1994) Will hybrids of genetically modified crops invade natural communities ? Tree 9 (3): 85–88

    CAS  Google Scholar 

  • Regal P (1992) Scientific principles for ecologically based risk assessment of transgenic plants. Draft prepared for the symposium Potential Ecological and non-target effects of transgenic plant gene products on agriculture, silviculture and natural ecosystems. November 30-December 2, 1992, College Park, Md

    Google Scholar 

  • Regal PJ (1994) Scientific principles for ecologically based risk assessment of transgenic organisms. Molecular Ecology 3: 5–13

    Article  Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Delmer Ji (1988) Genetically transformed maize plants from protoplasts. Science 240: 204–207

    Article  CAS  Google Scholar 

  • Rich TCG (1991) Crucifers of Great Britain and Ireland. B.S.B.Handbook No. 6. Botanical Society of the British isles. London

    Google Scholar 

  • Rissler J, Mellon M (eds.) (1993) Perils amidst the promise: ecological risks of transgenic crops in a global market Union of Concerned Scientists, Cambridge, M.A

    Google Scholar 

  • Röster L (1969) Zur Bestimmung und Beurteilung fon Fatuoiden und Bastardformen zwischen Saat-und Flughafer. Saat-und Pflanzgut 10: 731–735

    Google Scholar 

  • St. Pierre MD, Bayer RJ (1991) The impact of domestication on the genetic variability in the orange carrot, cultivated Daucus carota ssp. sativus and the genetic homogeneity of various cultivars. Theoretical and Applied Genetics 82: 249–253

    Google Scholar 

  • Salm van der T, Bosch D, Honee G, Feng L, Munterman L, Bakker P, Steikema W, Visser B (1994) Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry4A(b) and drylC genes: a resistance management strategy. Plant Molecular Biology 26: 51–59

    Article  Google Scholar 

  • Schemer J, Parkinson R, Dale P (1993) Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Transg. Res 2, 356–364

    Google Scholar 

  • Schlink S (1994) ökologie der Keimung und Dormanz von Körnerraps (Brassica napus L.) und ihre Bedeutung für eine Überdauerung der Samen im Boden. Dissertationes Botanicae Band 222. Cramer, Berlin, Stuttgart, 194p

    Google Scholar 

  • Schluter K, Potrykus I (1995) Horizontaler Gentransfer von transgenen Pflanzen zu Mikroorganismen (Bakterien und Pilzen) und seine ökologische Relevanz. Gutachten BATS, Fachstelle Für Biosicherheit und Abschätzung von Technikfolgen des Schwerpunktprogrammes Biotechnologie. 1–39

    Google Scholar 

  • Scholz H (1983) Die Unkraut-Hirse (Panicum miliareum subsp. ruderale) neue Tatsachen und Befunde. Plant Syst. Evol 143: 233–244

    Article  Google Scholar 

  • Scholz H (1991) Die Systematik der Avena sterilis und A. fatue (Gramineae). Eine kritische Studie. Vf illdenawia, 20, 103–112

    Google Scholar 

  • Schönberger H, Vries De G (1991) So bauen Sie den Rapsbestand gezielt auf. In: Rapsanbau Für Könner - Bestände gezielt aufbauen und schützen. Top agrar - Das Magazin für moderne Landwirtschaft Landwirtschaftsverlag Münster-Hiltrup, 20–26

    Google Scholar 

  • Schwaintz F (1971) Die Entstehung der Kulturpflanzen als Modell für die Evolution der gesamten Pflanzenwelt. In: G Heberer (eds.). Die Evolution der Organismen, 11/2, Stuttgart

    Google Scholar 

  • Shiba H, Takayama S, Iwano M, Shimosato H, Funato M, Nakagawa T, Che F, Suzuki G, Watanabe M, Hinata K, and Isogai A (2001) A Pollen Coat Protein, SPI1/SCR, Determines the Pollen Sspecificity in the Self-Incompatibility of Brassica Species. Plant Physiology 125: 2095–2103

    Article  CAS  Google Scholar 

  • Simmonds NW (ed.) (1976) Evolution of crop plants Langmann, London and New York

    Google Scholar 

  • Simmonds NW (ed.) (1979) Principles of crop improvement Longman, London and New York

    Google Scholar 

  • Simmonds NW (ed.) (1988) Principes d’amélioration génétique des végétaux Les Presses Universitaires de Laval, Quebec

    Google Scholar 

  • Small E (1984) Hybridization in the domesticated weed-wild complex. In: WF Grant (eds.): Plant Biosystematics Academic Press, Toronto, 195–210

    Google Scholar 

  • Sukopp U, Sukopp H (1993) Das Modell der Einführung und Einbürgerung nicht einheimischer Arten - Ein Beitrag zur Diskussion über die Freisetzung gentechnisch veränderter Arten. Gaia 2(5): 267–288

    Google Scholar 

  • Sukopp U, Sukopp H (1994) Ecological Long Term Effects of Cultigens Becoming Feral and of Naturalization of Nonnative Species, Experientia 49 (3): 210–218

    Article  Google Scholar 

  • Summermatter K (1996) Systeminch induzierte Resistenz bei Arabidopsis thaliana. Inaugural-Dissertation, Université de Fribourg, 49 pp

    Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annual Reviev of Entomology 39: 47–79

    Article  Google Scholar 

  • Tabashnik BE, Finson N, Johnson MW (1991) Managing resistance to Bacillus thuringiensis: lessons from the diamond back moth (Lepidoptera: Plutellidae). J Econ. Entomol 84: 49–55

    Google Scholar 

  • Tabashnik BE, Schwartz JM, Finson N, Johnson MW (1992 Inheritance of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 85: 1046–1055

    Google Scholar 

  • Thacker JRM (1994) Transgenic plants. Tree 9: 486

    Google Scholar 

  • Theisen H (1991) Bio-und Gentechnologie - Eine politische Herausforderung. Kohlhammer, Stuttgart, 193

    Google Scholar 

  • Thellung A (1912) La flore adventice de Montpellier. Mem. Soc. Nation. Sri. Nat. Math 38: 57–728

    Google Scholar 

  • Tiedje JM, Colwell RK, Grossmann YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The planned introduction of genetically engineered organisms: Ecological considerations and recommendations. Ecology 70 (2), 298–315

    Article  Google Scholar 

  • Timmons AM, Charters YM, Crawford JW, Burn D, Scott SE, Dubbels Si, Wilson NJ, Robertson A, O’Brien ET, Squire GR, Wilkinson Mi (1996) Risks from transgenic crops. Nature 380: 487

    Article  CAS  Google Scholar 

  • Tomiuk J, Loeschcke V (1993) Conditions for establishment and persistence of populations of transgenic organisms. In: K Wöhrmann, Tomiuk J (eds.): Transgenic organisms 117–133

    Google Scholar 

  • Umbeck PF, Barton K, Nordheim E, McCarthy J, Parrott W, Jenkins J (1991) Degree of pollen dispersal by insects from a field test of genetically engineered cotton. J. Econ. Entomol 84: 1943–1950

    Google Scholar 

  • Vries de FT, van der Meijden R, Brandenburg WA (eds.) (1992) Botanical files - A study of the real chances for spontaneous gene flow from cultivated plants to the wild flora of the Netherlands. Gorteria suppl.l, 100p

    Google Scholar 

  • Vries de IM (1990) Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca, Compositae). Plant. Syst. Evel 171: 232–233

    Google Scholar 

  • Weber B (1995) Überlegungen zur Aussagekraft von Risikoforschung zur Freisetzung transgener Pflanzen. In: S Albrecht, Beusmann V (eds.): Okologie transgener Nutzpflanzen,Gentechnologie - Chancen and Risiken Campus.Verlag Frankfurt/New York. 31: 111–126

    Google Scholar 

  • Wellen M, Sutter R (eds.) (1972) Verbreitungsatlas der Farn-and Bliitenpjlanzen der Schweiz. Vol. l & 2, Birkhäuser, Basel

    Google Scholar 

  • Wijnheimer EHM, Brandenburg WA, Ter Borg SJ (1989) Interactions between wild and cultivated carrots (Daucus carota L.) in the Netherlands. Euphytica 40, 147–154

    Google Scholar 

  • Williams IH, Corbett SA, Osborne IL (1991) Beekeeping, wild bees and pollination in the European community. Bee World 72: 170–180

    Google Scholar 

  • Williams SL, Dincher S, Carozzi N, Kessman H, Ward E, Ryals J (1992) Chemical regulation of Bacillus thuringiensis alpha-endotoxin expression in transgenic plants. Bio/technollogy 10: 540–543

    Article  Google Scholar 

  • Williamson MH (1988) Potential effects of recombinant DNA organisms on ecosystems and their components. Tree 3: 32–35

    Google Scholar 

  • Williamson MH (1993) Invaders, weeds and the risk from genetically manipulated organisms. Experientin 49: 219–224

    Article  Google Scholar 

  • Williamson M, Perrins J, Fitter A (1990) Releasing genetically engineered plants: Present proposals and possible hazards. Trends in Ecology and Evolution 5: 417–419

    Article  CAS  Google Scholar 

  • Wrubel RP, Krimsky S, Wetzler RE (1992) Field Testing Transgenic Plants. An analysis of the US Department of Agriculture’s environmental assessments. BioScience 42(4): 280–288

    Article  Google Scholar 

  • Young S (1989) Wayward genes play the field. New Scientist 49–53

    Google Scholar 

  • Zohary D (1992) Reproductive biology - introduction. Council of Europe, first workshop on conservation of the wild relatives of European cultivated plants: developing integrated strategies. Ria Fotorosa Nature Reserve, FARO (Portugal)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Ammann, K., Jacot, Y. (2003). Vertical gene flow. In: Ammann, K., Jacot, Y., Braun, R. (eds) Methods for Risk Assessment of Transgenic Plants. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8033-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8033-6_3

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9413-5

  • Online ISBN: 978-3-0348-8033-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics