Skip to main content

Heat shock protein-mediated activation of innate immune cells

  • Chapter
Book cover Heat Shock Proteins and Inflammation

Abstract

Cells of the innate immune system are equipped with germline encoded receptors allowing the recognition of structurally-conserved pathogen-associated microbial patterns (PAMP). A subgroup of those receptors are members of a recently defined family of proteins called the Toll-like receptors (TLR). The prototypic and name defining gene “Toll” was cloned in Drosophila melanogaster and was found to be not only responsible for dorso-ventral patterning of the developing larvae but also to play a central role in the defense against fungal and gram-positive infections. It soon became clear that mammals adopted this defense system, since at least ten different functional Toll-like receptors have been discovered in the genome of humans and nine in mice. These receptors are involved in the recognition of PAMPs like endotoxin, peptidoglycan, bacterial DNA, double-stranded RNA, flagellin, lipopeptides, etc. Remarkably, individual receptors are specialized to recognize certain PAMPs, e.g., TLR4 senses endotoxin and TLR9 bacterial DNA. Until recently the TLR system was thought to have evolved for the recognition of conserved and vital foreign structures of various micro-organisms, i.e., structures not present in the host. However, this principle was challenged by the discovery that HSPs of bacterial and mammalian origin were also able to stimulate innate immune cells via the TLR-system. Mammalian and bacterial HSPs share a high degree of homology, probably to maintain their essential function in mammalian and bacterial cells, i.e., the proper folding of a variety of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaufmann SH, Schoel B, van Embden JD, Koga T, Wand-Wurttenberger A, Munk ME, Steinhoff U (1991) Heat-shock protein 60: Implications for pathogenesis of and protection against bacterial infections. Immunol Rev 121: 67–90

    Article  PubMed  CAS  Google Scholar 

  2. Ranford JC, Henderson B (2002) Chaperonins in disease: Mechanisms, models, and treatments. Mol Pathol 55: 209–213

    Article  PubMed  CAS  Google Scholar 

  3. Schett G, Xu Q, Amberger A, Van der ZR, Recheis H, Willeit J, Wick G (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96: 2569–2577

    Article  PubMed  CAS  Google Scholar 

  4. Mandi OS, Home BD, Mullen K, Muhlestein JB, Byrne GI (2002) Serum immunoglobulin G antibodies to chlamydial heat shock protein 60 but not to human and bacterial homologs are associated with coronary artery disease. Circulation 106: 1659–1663

    Article  Google Scholar 

  5. Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: Relationship to physiological and psychosocial stress. Circulation 106: 196–201

    Article  PubMed  CAS  Google Scholar 

  6. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: A danger signal to the innate immune system. J Immunol 162: 3212–3219

    PubMed  CAS  Google Scholar 

  7. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276: 31332–31339

    Article  PubMed  CAS  Google Scholar 

  8. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial and human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Invest 103: 571–577

    Article  PubMed  CAS  Google Scholar 

  9. Prazeres da Costa C, Kirschning CJ, Busch D, Darr S, Jennen L, Heinzmann U, Prebeck S, Wagner H, Miethke T (2002) Role of chlamydial heat shock protein 60 in the stimulation of innate immune cells by Chlamydia pneumoniae. Eur J Immunol 32: 2460–2470

    Article  Google Scholar 

  10. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12: 1539–1546

    Article  PubMed  CAS  Google Scholar 

  11. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30: 2211–2215

    PubMed  CAS  Google Scholar 

  12. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6: 435–442

    Article  PubMed  CAS  Google Scholar 

  13. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277: 15107–15112

    Article  PubMed  CAS  Google Scholar 

  14. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178: 1391–1396

    Article  PubMed  CAS  Google Scholar 

  15. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269: 1585–1588

    Article  PubMed  CAS  Google Scholar 

  16. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277: 15028–15034

    Article  PubMed  CAS  Google Scholar 

  17. Binder RJ, Anderson KM, Basu S, Srivastava PK (2000) Cutting edge: Heat shock protein gp96 induces maturation and migration of CD11c+ cells in vivo. J Immunol 165: 6029–6035

    PubMed  CAS  Google Scholar 

  18. Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW (1994) Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun 62: 5689–5693

    PubMed  CAS  Google Scholar 

  19. Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23: 130–135

    Article  PubMed  CAS  Google Scholar 

  20. Binder RJ, Harris ML, Menoret A, Srivastava PK (2000) Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165: 2582–2587

    PubMed  CAS  Google Scholar 

  21. Binder RJ, Han DK, Srivastava PK (2000) CD91: A receptor for heat shock protein gp96. Nat Immunol 1: 151–155

    Article  PubMed  CAS  Google Scholar 

  22. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14: 303–313

    Article  PubMed  CAS  Google Scholar 

  23. Wang Y, Kelly CG, Karttunen JT, Whittall T, Lehner PJ, Duncan L, MacAry P, Younson JS, Singh M, Oehlmann W et al (2001) CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 15: 971–983

    Article  PubMed  CAS  Google Scholar 

  24. Habich C, Baumgart K, Kolb H, Burkart V (2002) The receptor for heat shock protein 60 on macrophages is saturable, specific, and distinct from receptors for other heat shock proteins. J Immunol 168: 569–576

    PubMed  CAS  Google Scholar 

  25. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: Heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164: 558–561

    PubMed  CAS  Google Scholar 

  26. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: Heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164: 13–17

    PubMed  CAS  Google Scholar 

  27. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1: 135–145

    Article  PubMed  CAS  Google Scholar 

  28. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K et al (2000) A toll-like receptor recognizes bacterial DNA. Nature 408: 740–745

    Article  PubMed  CAS  Google Scholar 

  29. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by toll-like receptor 6. Int Immunol 13: 933–940

    Article  PubMed  CAS  Google Scholar 

  30. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S (2002) Cutting edge: Role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J Immunol 169: 10–14

    PubMed  CAS  Google Scholar 

  31. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by co-operation between toll-like receptors. Proc Natl Acad Sci USA 97: 13766–13771

    Article  PubMed  CAS  Google Scholar 

  32. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, Morrison SG, Morrison RP, Arditi M (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168: 1435–1440

    PubMed  CAS  Google Scholar 

  33. Vabulas RM, Braedel S, Hilf N, Singh-Jasuja H, Herter S, Ahmad-Nejad P, Kirschning CJ, da Costa C, Rammensee HG, Wagner H et al (2002) The endoplasmic reticulumresident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem 277: 20847–20853

    Article  PubMed  CAS  Google Scholar 

  34. Soltys BJ, Gupta RS (1997) Cell surface localization of the 60 kDa heat shock chaperonin protein (hsp60) in mammalian cells. Cell Biol Int 21: 315–320

    Article  PubMed  CAS  Google Scholar 

  35. Altmeyer A, Maki RG, Feldweg AM, Heike M, Protopopov VP, Masur SK, Srivastava PK (1996) Tumor-specific cell surface expression of the-KDEL containing, endoplasmic reticular heat shock protein gp96. Int J Cancer 69: 340–349

    Article  PubMed  CAS  Google Scholar 

  36. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997) Heat shock protein 72 on tumor cells: A recognition structure for natural killer cells. J Immunol 158: 4341–4350

    PubMed  CAS  Google Scholar 

  37. Goulhen F, Hafezi A, Uitto VJ, Hinode D, Nakamura R, Grenier D, Mayrand D (1998) Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans. Infect Immun 66: 5307–5313

    PubMed  CAS  Google Scholar 

  38. Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE (1996) Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect Immun 64: 905–912

    PubMed  CAS  Google Scholar 

  39. Garduno RA, Faulkner G, Trevors MA, Vats N, Hoffman PS (1998) Immunolocalization of Hsp60 in Legionella pneumophila. J Bacteriol 180: 505–513

    PubMed  CAS  Google Scholar 

  40. Gillis TP, Miller RA, Young DB, Khanolkar SR, Buchanan TM (1985) Immunochemical characterization of a protein associated with Mycobacterium leprae cell wall. Infect Immun 49: 371–377

    CAS  Google Scholar 

  41. Ensgraber M, Loos M (1992) A 66-kilodalton heat shock protein of Salmonella typhimurium is responsible for binding of the bacterium to intestinal mucus. Infect Immun 60: 3072–3078

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

da Costa, C.U.I.P., Wagner, H., Miethke, T.C. (2003). Heat shock protein-mediated activation of innate immune cells. In: van Eden, W. (eds) Heat Shock Proteins and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8028-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8028-2_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9410-4

  • Online ISBN: 978-3-0348-8028-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics