Skip to main content

HSP60-peptide interference with CD94/NKG2 receptors

  • Chapter
Heat Shock Proteins and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

An efficient and sufficient inflammatory response mediated by cells belonging to both the innate and adaptive immune system, is crucial in order to clear infection and allow for tissue repair after damage. Natural killer (NK) cells are innate type of lymphocytes, which together with activated CD8+ T-cells mediates immune responses against many pathogens and tumors. These lymphocytes can survey tissues looking for evidence that a cell has been altered and thereby prevent pathogen invasion and/or tumor growth and metastasis. Upon encountering an altered cell, they have the option to either kill the cell directly through release of lytic granules and/or to produce cytokines. Rapidly accumulating data show that certain MHC Class I specific cell-surface receptors, known previously to critically regulate NK cell functions, appear on large numbers of CD8+ T-cells after activation [1-3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raulet DH, Vance RE, McMahon CW (2001) Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol 19: 291–330

    Article  PubMed  CAS  Google Scholar 

  2. Moser JM, Byers AM, Lukacher AE (2002) NK cell receptors in antiviral immunity. Curr Opin Immunol 14: 509–516

    Article  PubMed  CAS  Google Scholar 

  3. Anfossi N, Pascal V, Vivier E, Ugolini S (2001) Biology of T memory type 1 cells. Immunol Rev 181: 269–278

    Article  PubMed  CAS  Google Scholar 

  4. Ljunggren HG, Käne K (1990) In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today 11: 237–244

    Article  PubMed  CAS  Google Scholar 

  5. Cerwenka A, Lanier LL (2001) Natural killer cells, viruses and cancer. Nat Rev Immunol 1: 41–49

    Article  CAS  Google Scholar 

  6. Biassoni R, Cantoni C, Pende D, Sivori S, Parolini S, Vitale M, Bottino C, Moretta A (2001) Human natural killer cell receptors and co-receptors. Immunol Rev 181: 203–214

    Article  PubMed  CAS  Google Scholar 

  7. Lanier LL (1998) NK cell receptors. Annu Rev Immunol 16: 359–393

    Article  PubMed  CAS  Google Scholar 

  8. Boyington JC, Brooks AG, Sun PD (2001) Structure of killer cell immunoglobulin-like receptors and their recognition of the class I MHC molecules. Immunol Rev 181: 66–78

    Article  PubMed  CAS  Google Scholar 

  9. Colonna M, Nakajima H, Navarro F, Lopez-Botet M (1999) A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J Leukoc Biol 66: 375–381

    PubMed  CAS  Google Scholar 

  10. Cosman D, Fanger N, Borges L, Kubin M, Chin W, Peterson L, Hsu ML (1997) A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7: 273–282

    Article  PubMed  CAS  Google Scholar 

  11. Braud VM, Allan DS, O’Callaghan CA, Söderström K, D’Andrea A, Ogg GS, Lazetic S, Young NT, Bell JI, Phillips JH et al (1998) HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391: 795–799

    Article  PubMed  CAS  Google Scholar 

  12. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG (1998) Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 2: 187: 813–818

    Article  Google Scholar 

  13. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, Lopez-Botet M, Geraghty DE (1998) HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 95: 5199–5204

    Article  PubMed  CAS  Google Scholar 

  14. DeCloux A, Woods AS, Cotter RJ, Soloski MJ, Forman J (1997) Dominance of a single peptide bound to the class I(B) molecule, Qa-1b. J Immunol 158: 2183–2191

    Google Scholar 

  15. Vance RE, Kraft JR, Altman JD, Jensen PE, Raulet DH (1998) Mouse CD94/NKG2A is a natural killer cell receptor for the non-classical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188: 1841–1848

    Article  PubMed  CAS  Google Scholar 

  16. Kraft JR, Vance RE, Pohl J, Martin AM, Raulet DH, Jensen PE (2000) Analysis of Qa1(b) peptide binding specificity and the capacity of CD94/NKG2A to discriminate between Qa-1-peptide complexes. J Exp Med 192: 613–624

    Article  PubMed  CAS  Google Scholar 

  17. Peruzzi M, Parker KC, Long EO, Malnati MS (1996) Peptide sequence requirements for the recognition of HLA-B“2705 by specific natural killer cells. J Immunol 157: 3350–3356

    PubMed  CAS  Google Scholar 

  18. Peruzzi M, Wagtmann N, Long EO (1996) A p70 killer cell inhibitory receptor specific for several HLA-B allotypes discriminates among peptides bound to HLA-B*2705. J Exp Med 184: 1585–1590

    Article  CAS  Google Scholar 

  19. Malnati MS, Peruzzi M, Parker KC, Biddison WE, Ciccone E, Moretta A, Long EO (1995) Peptide specificity in the recognition of MHC class I by natural killer cell clones. Science 267: 1016–1018

    Article  PubMed  CAS  Google Scholar 

  20. Rajagopalan S, Long EO (1997) The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity. J Exp Med 185: 1523–1528

    Article  PubMed  CAS  Google Scholar 

  21. Mandelboim O, Wilson SB, Vales-Gomez M, Reyburn HT, Strominger JL (1997) Self and viral peptides can initiate lysis by autologous natural killer cells. Proc Natl Acad Sci USA 94: 4604–4609

    Article  PubMed  CAS  Google Scholar 

  22. King A, Loke YW (1991) On the nature and function of human uterine granular lymphocytes. Immunol Today 12: 432–435

    Article  PubMed  CAS  Google Scholar 

  23. Hata K, Zhang XR, Iwatsuki S, Van Thiel DH, Herberman RB, Whiteside TL (1990) Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol Immunopathol 56: 401–419

    Article  PubMed  CAS  Google Scholar 

  24. Buentke E, Heffler LC, Wilson JL, Wallin RP, Lofman C, Chambers BJ, Ljunggren HG, Scheynius A (2002) Natural killer and dendritic cell contact in lesional atopic dermatitis skin — malassezia-influenced cell interaction. J Invest Dermatol 119: 850–857

    Article  PubMed  CAS  Google Scholar 

  25. Sedlmayr P, Schallhammer L, Hammer A, Wilders-Truschnig M, Wintersteiger R, Dohr G (1996) Differential phenotypic properties of human peripheral blood CD56dim+ and CD56bright+ natural killer cell subpopulations. Int Arch Allergy Immunol 110: 308–313

    Article  PubMed  CAS  Google Scholar 

  26. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE, Caligiuri MA (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97: 3146–3151

    Article  PubMed  CAS  Google Scholar 

  27. Jacobs R, Hintzen G, Kemper A, Beul K, Kempf S, Behrens G, Sykora KW, Schmidt RE (2001) CD56 bright cells differ in their KIR repertoire and cytotoxic features from CD56 dim NK cells. Eur J Immunol 31: 3121–3127

    Article  PubMed  CAS  Google Scholar 

  28. Cooper MA, Fehniger TA, Ponnappan A, Mehta V, Wewers MD, Caligiuri MA (2001) Interleukin-1beta co-stimulates interferon-gamma production by human natural killer cells. Eur J Immunol 31: 792–801

    Article  PubMed  CAS  Google Scholar 

  29. Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA (2003) CD56 bright natural killer cells are present in human lymph nodes and are activated by T cell derived IL-2: a potential new link between adaptive and innate immunity. Blood 101: 3052–3057

    Article  PubMed  CAS  Google Scholar 

  30. Mandelboim O, Kent S, Davis DM, Wilson SB, Okazaki T, Jackson R, Hafler D, Strominger JL (1998) Natural killer activating receptors trigger interferon gamma secretion from T cells and natural killer cells. Proc Natl Acad Sci USA 95: 3798–3803

    Article  PubMed  CAS  Google Scholar 

  31. Voss SD, Daley J, Ritz J, Robertson MJ (1998) Participation of the CD94 receptor complex in costimulation of human natural killer cells. J Immunol 160: 1618–1626

    PubMed  CAS  Google Scholar 

  32. Perez-Villar JJ, Melero I, Rodriguez A, Carretero M, Aramburu J, Sivori S, Orengo AM, Moretta A, Lopez-Botet M (1995) Functional ambivalence of the Kp43 (CD94) NK cell-associated surface antigen. J Immunol 154: 5779–5788

    PubMed  CAS  Google Scholar 

  33. Aramburu J, Balboa MA, Rodriguez A, Melero I, Alonso M, Alonso JL, Lopez-Botet M (1993) Stimulation of IL-2-activated natural killer cells through the Kp43 surface antigen up-regulates TNF-alpha production involving the LFA-1 integrin. J Immunol 151: 3420–3429

    PubMed  CAS  Google Scholar 

  34. Takahashi K, Miyake S, Kondo T, Terao K, Hatakenaka M, Hashimoto S, Yamamura T (2001) Natural killer type 2 bias in remission of multiple sclerosis. J Clin Invest 107: R23–29

    Article  PubMed  CAS  Google Scholar 

  35. Warren HS, Kinnear BF, Phillips JH, Lanier LL (1995) Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J Immunol 154: 5144–5152

    PubMed  CAS  Google Scholar 

  36. Rajagopalan S, Fu J, Long EO (2001) Cutting edge: induction of IFN-gamma production but not cytotoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J Immunol 167: 1877–1881

    PubMed  CAS  Google Scholar 

  37. Piccioli D, Sbrana S, Melandri E, Valiante NM (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195: 335–341

    Article  PubMed  CAS  Google Scholar 

  38. Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195: 327–333

    Article  PubMed  CAS  Google Scholar 

  39. Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195: 343–351

    Article  PubMed  CAS  Google Scholar 

  40. Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, Wu L, Butcher EC (2001) Unique subpopulations of CD56’ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166: 6477–6482

    PubMed  CAS  Google Scholar 

  41. Frey M, Packianathan NB, Fehniger TA, Ross ME, Wang WC, Stewart CC, Caligiuri MA, Evans SS (1998) Differential expression and function of L-selectin on CD56bright and CD56dim natural killer cell subsets. J Immunol 161: 400–408

    PubMed  CAS  Google Scholar 

  42. Dalbeth N, Callan MF (2002) A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum 46: 1763–1772

    Article  PubMed  Google Scholar 

  43. Gunturi A, Berg RE, Forman J (2003) Preferential survival of CD8 T and NK Cells expressing high levels of CD94. J Immunol 170: 1737–1745

    PubMed  CAS  Google Scholar 

  44. Koller BH, Geraghty DE, Shimizu Y, DeMars R, Orr HT (1988) HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. J Immunol 141: 897–904

    PubMed  CAS  Google Scholar 

  45. Moser JM, Byers AM, Lukacher AE (2002) NK cell receptors in antiviral immunity. Curr Opin Immunol 14: 509–516

    Article  PubMed  CAS  Google Scholar 

  46. Moser JM, Gibbs J, Jensen PE, Lukacher AE (2002) CD94–NKG2A receptors regulate antiviral CD8(+) T cell responses. Nat Immunol 3: CD94–NKG2

    Article  PubMed  CAS  Google Scholar 

  47. McMahon CW, Zajac AJ, Jamieson AM, Corral L, Hammer GE, Ahmed R, Raulet DH (2002) Viral and bacterial infections induce expression of multiple NK cell receptors in responding CD8(+) T cells. J Immunol 169: 1444–1452

    Google Scholar 

  48. Zhu H, Cong JP, Mamtora G, Gingeras T, Shenk T (1998) Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci USA 95: 14470–14475

    Article  PubMed  CAS  Google Scholar 

  49. Huang Q, Liu D, Majewski P, Schulte LC, Korn JM, Young RA, Lander ES, Hacohen N (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294: 870–875

    Article  PubMed  CAS  Google Scholar 

  50. Saito M, Braud VM, Goon P, Hanon E, Taylor GP, Saito A, Eiraku N, Tanaka Y, Usuku K, Weber JN et al (2003) Low frequency of CD94/NKG2A-positive T lymphocytes in HTLV-1 associated myelopathy/tropical spastic paraparesis patients but not in asymptomatic carriers. Blood 102: 577–584

    Article  PubMed  CAS  Google Scholar 

  51. Pedersen LO, Vetter CS, Mingari MC, Andersen MH, Thor Straten P, Brocker EB, Becker JC (2002) Differential expression of inhibitory or activating CD94/NKG2 subtypes on MART-1-reactive T cells in vitiligo versus melanoma: a case report. J Invest Dermatol 118: 595–599

    Article  PubMed  CAS  Google Scholar 

  52. Becker JC, Vetter CS, Schrama D, Brocker EB, Thor Straten P (2000) Differential expression of CD28 and CD94/NKG2 on T cells with identical TCR beta variable regions in primary melanoma and sentinel lymph node. Eur J Immunol 30: 3699–3706

    Article  PubMed  CAS  Google Scholar 

  53. Vetter CS, Straten PT, Terheyden P, Zeuthen J, Brocker EB, Becker JC (2000) Expression of CD94/NKG2 subtypes on tumor-infiltrating lymphocytes in primary and metastatic melanoma. J Invest Dermatol 114: 941–947

    Article  PubMed  CAS  Google Scholar 

  54. Perrin G, Speiser D, Porret A, Quiquerez AL, Walker PR, Dietrich PY (2001) Sister cytotoxic CD8+ T cell clones differing in natural killer inhibitory receptor expression in human astrocytoma. Immunol Lett 81: 125–132

    Article  Google Scholar 

  55. Speiser DE, Pittet MJ, Valmori D, Dunbar R, Rimoldi D, Lienard D, MacDonald HR, Cerottini JC, Cerundolo V, Romero P (1999) In vivo expression of natural killer cell inhibitory receptors by human melanoma-specific cytolytic T lymphocytes. J Exp Med 190: 775–782

    Article  CAS  Google Scholar 

  56. Jabri B, Selby JM, Negulescu H, Lee L, Roberts AI, Beavis A, Lopez-Botet M, Ebert EC, Winchester RJ (2002) TCR specificity dictates CD94/NKG2A expression by human CTL. Immunity 17: 487–499

    Article  PubMed  CAS  Google Scholar 

  57. Bellon T, Heredia AB, Llano M, Minguela A, Rodriguez A, Lopez-Botet M, Aparicio P (1999) Triggering of effector functions on a CD8+ T cell clone upon the aggregation of an activatory CD94/kp39 heterodimer. J Immunol 162: 3996–4002

    PubMed  CAS  Google Scholar 

  58. Aramburu J, Balboa MA, Ramirez A, Silva A, Acevedo A, Sanchez-Madrid F, De Landazuri MO, Lopez-Botet M (1990) A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-gamma/delta. T lymphocytes. I. Inhibition of the IL-2-dependent proliferation by anti-Kp43 monoclonal antibody. J Immunol 144: 3238–3247

    PubMed  CAS  Google Scholar 

  59. Romero P, Ortega C, Palma A, Molina IJ, Pena J, Santamaria M (2001) Expression of CD94 and NKG2 molecules on human CD4(+) T cells in response to CD3-mediated stimulation. J Leukoc Biol 70: 219–224

    PubMed  CAS  Google Scholar 

  60. Meyers JH, Ryu A, Monney L, Nguyen K, Greenfield EA, Freeman GJ, Kuchroo VK (2002) Cutting edge: CD94/NKG2 is expressed on Th1 but not Th2 cells and costimulates Th1 effector functions. J Immunol 169: 5382–5386

    PubMed  CAS  Google Scholar 

  61. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22: 631–677

    Article  PubMed  CAS  Google Scholar 

  62. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–366

    Article  PubMed  CAS  Google Scholar 

  63. Soltys BJ, Gupta RS (1996) Immunoelectron microscopic localization of the 60 kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res 222: 16–27

    Article  PubMed  CAS  Google Scholar 

  64. Singh B, Patel HV, Ridley RG, Freeman KB, Gupta RS (1990) Mitochondrial import of the human chaperonin (HSP60) protein. Biochem Biophys Res Commun 169: 391–396

    Article  PubMed  CAS  Google Scholar 

  65. Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437–496

    Article  PubMed  CAS  Google Scholar 

  66. Cohen IR, Young DB (1991) Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 12: 105–110

    Article  PubMed  CAS  Google Scholar 

  67. Anderton SM, van der Zee R, Goodacre JA (1993) Inflammation activates self hsp60- specific T cells. Eur J Immunol 23: 33–38

    Article  PubMed  CAS  Google Scholar 

  68. van Eden W (1991) Heat-shock proteins as immunogenic bacterial antigens with the potential to induce and regulate autoimmune arthritis. Immunol Rev 121: 5–28

    Article  PubMed  Google Scholar 

  69. Paul AG, van Kooten PJ, van Eden W, van der Zee R (2000) Highly autoproliferative T cells specific for 60 kDa heat shock protein produce IL-4/IL-10 and IFN-gamma and are protective in adjuvant arthritis. J Immunol 165: 7270–7277

    PubMed  CAS  Google Scholar 

  70. Prakken AB, van Eden W, Rijkers GT, Kuis W, Toebes EA, de Graeff-Meeder ER, van der Zee R, Zegers BJ (1996) Autoreactivity to human heat-shock protein 60 predicts disease remission in oligoarticular juvenile rheumatoid arthritis. Arthritis Rheum 39: 1826–1832

    Article  PubMed  CAS  Google Scholar 

  71. Prakken B, Wauben M, van Kooten P, Anderton S, van der Zee R, Kuis W, van Eden W (1998) Nasal administration of arthritis-related T cell epitopes of heat shock protein 60 as a promising way for immunotherapy in chronic arthritis. Biotherapy 10: 205–211

    Article  PubMed  CAS  Google Scholar 

  72. van der Zee R, Anderton SM, Prakken AB, Liesbeth Paul AG, van Eden W (1998) T cell responses to conserved bacterial heat-shock-protein epitopes induce resistance in experimental autoimmunity. Semin Immunol 10: 35–41

    Article  PubMed  Google Scholar 

  73. Anderton SM, van der Zee R, Prakken B, Noordzij A, van Eden W (1995) Activation of T cells recognizing self 60 kDa heat shock protein can protect against experimental arthritis. J Exp Med 181: 943–952

    Article  PubMed  CAS  Google Scholar 

  74. Quintana FJ, Carmi P, Mor F, Cohen IR (2002) Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. J Immunol 169: 3422–3428

    PubMed  CAS  Google Scholar 

  75. Billingham ME, Carney S, Butler R, Colston MJ (1990) A mycobacterial 65 kD heat shock protein induces antigen-specific suppression of adjuvant arthritis, but is not itself arthritogenic. J Exp Med 171: 339–344

    Article  PubMed  CAS  Google Scholar 

  76. Raz I, Elias D, Avron A, Tamir M, Metzger M, Cohen IR (2001) Beta-cell function in new-onset type 1 diabetes and immuno-modulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. Lancet 358: 1749–1753

    Article  PubMed  CAS  Google Scholar 

  77. Imani F, Soloski MJ (1991) Heat shock proteins can regulate expression of the Tla region-encoded class Ib molecule Qa-1. Proc Natl Acad Sci USA 88: 10475–10479

    Article  PubMed  CAS  Google Scholar 

  78. Lo WF, Woods AS, DeCloux A, Cotter RJ, Metcalf ES, Soloski MJ (2000) Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat Med 6: 215–218

    Article  PubMed  CAS  Google Scholar 

  79. Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Kärre K, Söderström K (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196: 1403–1414

    Article  PubMed  CAS  Google Scholar 

  80. Cerboni C, Mousavi-Jazi M, Wakiguchi H, Carbone E, Käne K, Söderström K (2001) Synergistic effect of IFN-gamma and human cytomegalovirus protein UL40 in the HLAE-dependent protection from NK cell-mediated cytotoxicity. Eur J Immunol 31: 2926–2935

    Article  PubMed  CAS  Google Scholar 

  81. Soderberg-Naucler C, Fish KN, Nelson JA (1997) Interferon-gamma and tumor necrosis factor-alpha specifically induce formation of cytomegalovirus-permissive monocytederived macrophages that are refractory to the antiviral activity of these cytokines. J Clin Invest 100: 3154–3163

    Article  PubMed  CAS  Google Scholar 

  82. Wang EC, McSharry B, Retiere C, Tomasec P, Williams S, Borysiewicz LK, Braud VM, Wilkinson GW (2002) UL40-mediated NK evasion during productive infection with human cytomegalovirus. Proc Natl Acad Sci USA 99: 7570–7575

    Article  PubMed  CAS  Google Scholar 

  83. Malmberg KJ, Levitsky V, Norell H, de Matos CT, Carlsten M, Schedvins K, Rabbani H, Moretta A, Soderstrom K, Levitskaya J et al (2002) IFN-gamma protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J Clin Invest 110: 1515–1523

    PubMed  CAS  Google Scholar 

  84. Vales-Gomez M, Reyburn HT, Erskine RA, Lopez-Botet M, Strominger JL (1999) Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2- A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 18: 4250–4260

    Article  PubMed  CAS  Google Scholar 

  85. Dulphy N, Rabian C, Douay C, Flinois O, Laoussadi S, Kuipers J, Tamouza R, Charron D, Toubert A (2002) Functional modulation of expanded CD8+ synovial fluid T cells by NK cell receptor expression in HLA-B27-associated reactive arthritis. Int Immunol 14: 471–479

    Article  PubMed  CAS  Google Scholar 

  86. Herberts CA, van Gaans, van den Brink J, van der Heeft E, van Wijk M, Hoekman J, Jaye A, Poelen MC, Boog CJ, Roholl PJ, Whittle H et al (2003) Autoreactivity against induced or up-regulated abundant self-peptides in HLA-A*0201 following measles virus infection. Hum Immunol 64: 44–55

    Article  PubMed  CAS  Google Scholar 

  87. Hodgkinson AD, Millward BA, Demaine AG (2000) The HLA-E locus is associated with age at onset and susceptibility to type 1 diabetes mellitus. Hum Immunol 61: 290–295

    Article  PubMed  CAS  Google Scholar 

  88. Jawaheer D, Li W, Graham RR, Chen W, Damle A, Xiao X, Monteiro J, Khalili H, Lee A, Lundsten R et al (2002) Dissecting the genetic complexity of the association between human leukocyte antigens and rheumatoid arthritis. Am J Hum Genet 71: 585–594

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Söderström, K. (2003). HSP60-peptide interference with CD94/NKG2 receptors. In: van Eden, W. (eds) Heat Shock Proteins and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8028-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8028-2_17

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9410-4

  • Online ISBN: 978-3-0348-8028-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics