Skip to main content

Mycobacterial heat shock proteins and the bovine immune system

  • Chapter
Heat Shock Proteins and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 126 Accesses

Abstract

Mycobacterial infections constitute a major thread to cattle populations worldwide. The major mycobacterial infections are tuberculosis, caused by infection with M. bovis (MB), and paratuberculosis, caused by infection with M. avium ssp. paratuberculosis (MAP). Evidence of (bovine) tuberculosis goes back to before the domestication of cattle (8000-4000 BC), however the battle against mycobacteria was significantly boosted by the discovery of the tubercle bacillus in 1882 by Robert Koch [1, 2]. Bovine tuberculosis can reside in many different organs, although the pulmonary form is usually considered to be the “classical” form, the latter being restricted to the lung and its draining lymph nodes. The description of a chronic granulomatous infection of the small intestine in a cow, by Johne and Frottingham in 1895, was the first report on paratuberculosis; although at the time they considered it to be an unusual case of bovine tuberculosis [3]. Apart from the fact that MB and MAP have different tissue trophisms, they share many other characteristics. Both cause slow developing diseases, with a long asymptomatic period during which disease is spread between individuals, eventually causing a wasting syndrome in animals progressing to the clinical stage of the disease, months or more likely years after infection. Both diagnosis, especially in the early asymptomatic stages of the disease, as well as protective vaccination are notoriously difficult. Both diseases also represent a threat to human health as bovine tuberculosis is a zoonosis and, although still controversial, MAP has been implicated in the etiology of human Crohn’s Disease [1, 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins CH (2000) The bovine tubercle bacillus. Br J Biomed Sci 57: 234–240

    PubMed  CAS  Google Scholar 

  2. Waddington K (2001) The science of cows: tuberculosis, research and the state in the United Kingdom, 1890–1914. Hist Sci 39: 1890–1914

    PubMed  CAS  Google Scholar 

  3. Johne HA, Frothingham L (1895) Ein eigenthilmlicher Fall von Tuberculose beim Rind. Deutsche Zeitschrift f. Thiermed. u. vergl. Pathologie XXV: 438–454

    Google Scholar 

  4. Chiodini RJ, Rossiter CA (1996) Paratuberculosis: a potential zoonosis? Vet Clin North Am Food Anim Pract 12: 457–467

    CAS  Google Scholar 

  5. Davis WC, Brown WC, Hamilton MJ, Wyatt CR, Orden JA, Khalid AM, Naessens J (1996) Analysis of monoclonal antibodies specific for the gamma delta TcR. Vet Immunol Immunopathol 52: 275–283

    Article  PubMed  CAS  Google Scholar 

  6. Wyatt CR, Brackett EJ, Perryman LE, Davis WC (1996) Identification of gamma delta T lymphocyte subsets that populate calf ileal mucosa after birth. Vet Immunol Immunopathol 52: 91–103

    Article  PubMed  CAS  Google Scholar 

  7. Boismenu R, Havran WL (1997) An innate view of gamma delta T cells. Curr Opin Immunol 9: 57–63

    Article  PubMed  CAS  Google Scholar 

  8. Born W, Cady C, Jones-Carson J, Mukasa A, Lahn M, O’Brien R (1999) Immunoregulatory functions of gamma delta T cells. Adv Immunol 71: 77–144

    Article  PubMed  CAS  Google Scholar 

  9. Sweeney RW (1996) Transmission of paratuberculosis. Vet Clin North Am Food Anim Pract 12: 305–312

    PubMed  CAS  Google Scholar 

  10. Momotani E, Whipple DL, Thiermann AB, Cheville NF (1988) Role of M cells and macrophages in the entrance of Mycobacterium paratuberculosis into domes of ileal Peyer’s patches in calves. Vet Pathol 25: 131–137

    Article  PubMed  CAS  Google Scholar 

  11. Pieters J (2001) Entry and survival of pathogenic mycobacteria in macrophages. Microbes Infect 3: 249–255

    Article  PubMed  CAS  Google Scholar 

  12. Kuehnel MP, Goethe R, Habermann A, Mueller E, Rohde M, Griffiths G, Valentin-Weigand P (2001) Characterization of the intracellular survival of Mycobacterium avium ssp. paratuberculosis: phagosomal pH and fusogenicity in J774 macrophages compared with other mycobacteria. Cell Microbiol 3: 551–566

    Article  PubMed  CAS  Google Scholar 

  13. Clarke CJ (1997) The pathology and pathogenesis of paratuberculosis in ruminants and other species. J Comp Pathol 116: 217–261

    Article  PubMed  CAS  Google Scholar 

  14. Chiodini RJ (1996) Immunology: resistance to paratuberculosis. Vet Clin North Am Food Anim Pract 12: 313–343

    PubMed  CAS  Google Scholar 

  15. Kaufmann SH (2001) How can immunology contribute to the control of tuberculosis? Nat Rev Immunol 1: 20–30

    Article  PubMed  CAS  Google Scholar 

  16. Ivanyi J, Norton P, Matsuzaki G (1996) Immune responses to stress proteins in mycobacterial infections. In: W van Eden, D Young (eds): Stress proteins in medicine. Marcel Dekker Inc, New York, 265–286

    Google Scholar 

  17. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991–1045

    Article  PubMed  CAS  Google Scholar 

  18. Kaufmann SH (1990) Heat shock proteins and the immune response. Immunol Today 11: 129–136

    Article  PubMed  CAS  Google Scholar 

  19. van Eden W, van der Zee R, Paul A, Prakken B, Wendling U, Anderton S, Wauben M (1998) Do heat shock proteins control the balance of T-cell regulation in inflammatory diseases? Immunol Today 19: 303–307

    Article  PubMed  Google Scholar 

  20. Rook GA, Stanford JL (1998) Give us this day our daily germs. Immunol Today 19: 113–116

    PubMed  CAS  Google Scholar 

  21. Abbas B, Riemann HP (1988) IgG, IgM and IgA in the serum of cattle naturally infected with Mycobacterium paratuberculosis. Comp Immunol Microbiol Infect Dis 11: 171–175

    Article  PubMed  CAS  Google Scholar 

  22. Spangler L, Bech-Nielsen S, Heider L (1988) A study of sub-clinical paratuberculosis in three central Ohio dairy herds: fecal culture, serologic testing and milk production. Acta Vet Scandinavica S 84: 148–150

    Google Scholar 

  23. Vannuffel P, Gilot P, Limbourg B, Naerhuyzen B, Dieterich C, Coene M, Machtelinckx L, Cocito C (1994) Development of species-specific enzyme-linked immunosorbent assay for diagnosis of Johne’s disease in cattle. J Clin Microbiol 32: 1211–1216

    PubMed  CAS  Google Scholar 

  24. Sockett DC, Conrad TA, Thomas CB, Collins MT (1992) Evaluation of four serological tests for bovine paratuberculosis. J Clin Microbiol 30: 1134–1139

    PubMed  CAS  Google Scholar 

  25. Collins MT, Angulo A, Buergelt CD, Hennager SG, Hietala SK, Jacobson RH, Whipple DL, Whitlock RH (1993) Reproducibility of a commercial enzyme-linked immunosorbent assay for bovine paratuberculosis among eight laboratories. J Vet Diagn Invest 5: 52–55

    Article  PubMed  CAS  Google Scholar 

  26. Hilbink F, West DM, de Lisle GW, Kittelberger R, Hosie BD, Hutton J, Cooke MM, Penrose M (1994) Comparison of a complement fixation test, a gel diffusion test and two absorbed and unabsorbed ELISA’s for the diagnosis of paratuberculosis in sheep. Vet Microbiol 41: 107–116

    Article  PubMed  CAS  Google Scholar 

  27. Jark U, Ringena I, Franz B, Gerlach GF, Beyerbach M, Franz B (1997) Development of an ELISA technique for serodiagnosis of bovine paratuberculosis. Vet Microbiol 57: 189–198

    Article  PubMed  CAS  Google Scholar 

  28. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136: 2348–2357

    PubMed  CAS  Google Scholar 

  29. Brown WC, Estes DM (1997) Type I and type II responses in cattle and their regulation. In: MS Horzinek, VECJ Chijns (eds): Cytokines in veterinary medicine. CAB International, Wallingford, UK, 15–33

    Google Scholar 

  30. Abbas A, Murphy K, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383: 787–793

    Article  PubMed  CAS  Google Scholar 

  31. Estes DM, Closser NM, Allen GK (1994) IFN-g stimulates IgG2 production from bovine B cells co-stimulated with anti-m and mitogen. Cell Immunol 154: 287–295

    Article  PubMed  CAS  Google Scholar 

  32. Estes DM, Hirano A, Heussler VT, Dobbelaere DA, Brown WC (1995) Expression and biological activities of bovine interleukin 4: effects of recombinant bovine interleukin 4 on T cell proliferation and B cell differentiation and proliferation in vitro. Cell Immunol 163: 268–279

    Article  CAS  Google Scholar 

  33. Brown WC, McElwain TF, Palmer GH, Chantler SE, Estes DM (1999) Bovine CD4(+) T-lymphocyte clones specific for rhoptry-associated protein 1 of Babesia bigemina stimulate enhanced immunoglobulin G1 (IgGl) and IgG2 synthesis. Infect Immun 67: 155–164

    PubMed  CAS  Google Scholar 

  34. Koets AP, Rutten VP, de Boer M, Bakker D, Valentin-Weigand P, van Eden W (2001) Differential changes in heat shock protein-, lipoarabinomannan-, and purified protein derivative-specific immunoglobulin G1 and G2 isotype responses during bovine Mycobacterium avium subsp. paratuberculosis infection. Infect Immun 69: 1492–1498

    Article  PubMed  CAS  Google Scholar 

  35. Koets AP, Rutten VP, Hoek A, Bakker D, van Zijderveld F, Muller KE, van Eden W (1999) Heat-shock protein-specific T-cell responses in various stages of bovine paratuberculosis. Vet Immunol Immunopathol 70: 105–115

    Article  PubMed  CAS  Google Scholar 

  36. Koets A, Rutten V, Hoek A, van Mil F, Muller K, Bakker D, Gruys E, van Eden W (2002) Progressive bovine paratuberculosis is associated with local loss of CD4(+) T cells, increased frequency of gamma delta T cells, and related changes in T-cell function. Infect Immun 70: 3856–3864

    Article  PubMed  CAS  Google Scholar 

  37. Ottenhoff TH, Kumararatne D, Casanova JL (1998) Novel human immunodeficiencies reveal the essential role of type-I cytokines in immunity to intracellular bacteria. Immunol Today 19: 491–494

    Article  PubMed  CAS  Google Scholar 

  38. Thompson-Snipes L, Skamene E, Radzioch D (1998) Acquired resistance but not innate resistance to Mycobacterium bovis bacillus Calmette-Guerin is compromised by interleukin-12 ablation. Infect Immun 66: 5268–5274

    PubMed  CAS  Google Scholar 

  39. Flesch IE, Hess JH, Huang S, Aguet M, Rothe J, Bluethmann H, Kaufmann SH (1995) Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha. J Exp Med 181: 1615–1621

    Article  PubMed  CAS  Google Scholar 

  40. Schaible UE, Collins HL, Kaufmann SH (1999) Confrontation between intracellular bacteria and the immune system. Adv Immunol 71: 267–377

    Article  PubMed  CAS  Google Scholar 

  41. Cho S, Mehra V, Thoma-Uszynski S, Stenger S, Serbina N, Mazzaccaro RJ, Flynn JL, Barnes PF, Southwood S, Celis E et al (2000) Antimicrobial activity of MHC class I-restricted CD8+ T cells in human tuberculosis. Proc Natl Acad Sci USA 97: 12210–12215.

    Article  PubMed  CAS  Google Scholar 

  42. Stenger S, Modlin RL (1998) Cytotoxic T cell responses to intracellular pathogens. Curr Opin Immunol 10: 471–477

    Article  PubMed  CAS  Google Scholar 

  43. Milon G, Louis J (1993) CD8+ T cells and immunity to intracellular pathogens. Parasitology Today 9: 196–197

    Article  PubMed  CAS  Google Scholar 

  44. Zugel U, Kaufmann SH (1997) Activation of CD8 T cells with specificity for mycobacterial heat shock protein 60 in Mycobacterium bovis bacillus Calmette-Guerin-vaccinated mice. Infect Immun 65: 3947–3950

    PubMed  CAS  Google Scholar 

  45. Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14: 45–51

    Article  PubMed  CAS  Google Scholar 

  46. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14: 303–313

    Article  PubMed  CAS  Google Scholar 

  47. Binder RJ, Han DK, Srivastava PK (2000) CD91: a receptor for heat shock protein gp96. Nat Immunol 1: 151–155

    Article  PubMed  CAS  Google Scholar 

  48. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17: 353

    Article  PubMed  CAS  Google Scholar 

  49. Srivastava PK, Amato RJ (2001) Heat shock proteins: the “Swiss Army Knife” vaccines against cancers and infectious agents. Vaccine 19: 2590–2597

    Article  PubMed  CAS  Google Scholar 

  50. Wallin RP, Lundqvist A, More SH, von Bonin A, Kiessling R, Ljunggren HG (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23: 130–135

    Article  PubMed  CAS  Google Scholar 

  51. Langelaar M, Koets A, Muller K, van Eden W, Noordhuizen J, Howard C, Hope J, Rut-ten V (2002) Mycobacterium paratuberculosis heat shock protein 70 as a tool in control of paratuberculosis. Vet Immunol Immunopathol 87: 239–244

    Article  PubMed  CAS  Google Scholar 

  52. Hein WR, Mackay CR (1991) Prominance of yo T cells in the ruminant immune system. Immunol Today 12: 30–34

    Article  PubMed  CAS  Google Scholar 

  53. Takamatsu HH, Kirkham PA, Parkhouse RM (1997) A gamma delta T cell specific surface receptor (WC1) signaling GO/GI cell cycle arrest. Eur J Immunol 27: 105–110

    Article  PubMed  CAS  Google Scholar 

  54. Wijngaard PL, MacHugh ND, Metzelaar MJ, Romberg S, Bensaid A, Pepin L, Davis WC, Clevers HC (1994) Members of the novel WC1 gene family are differentially expressed on subsets of bovine CD4–CD8- gamma delta T lymphocytes. J Immunol 152: CD4–CD8

    PubMed  CAS  Google Scholar 

  55. Clevers H, MacHugh ND, Bensaid A, Dunlap S, Baldwin CL, Kaushal A, Iams K, Howard CJ, Morrison WI (1990) Identification of a bovine surface antigen uniquely expressed on CD4-CD8- T cell receptor gamma/delta+ T lymphocytes. Eur J Immunol 20: 809–817

    Article  PubMed  CAS  Google Scholar 

  56. Soloski MJ, Szperka ME, Davies A, Wooden SL (2000) Host immune response to intracellular bacteria: A role for MHC-linked class-Ib antigen-presenting molecules. Proc Soc Exp Biol Med 224: 231–239

    Article  PubMed  CAS  Google Scholar 

  57. Porcelli SA, Segelke BW, Sugita M, Wilson IA, Brenner MB (1998) The CD1 family of lipid antigen-presenting molecules. Immunol Today 19: 362–368

    Article  PubMed  CAS  Google Scholar 

  58. Hein WR, Dudler L (1997) TCR gamma delta+ cells are prominent in normal bovine skin and express a diverse repertoire of antigen receptors. Immunology 91: 58–64

    Article  PubMed  CAS  Google Scholar 

  59. Zugel U, Kaufmann SH (1999) Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin Microbiol Rev 12: 19–39

    PubMed  CAS  Google Scholar 

  60. Born W, Hall L, Dallas A, Boymel J, Shinnick T, Young D, Brennan P, O’Brien R (1990) Recognition of a peptide antigen by heat shock-reactive gamma delta T lymphocytes. Science 249: 67–69

    Article  PubMed  CAS  Google Scholar 

  61. Pfeffer K, Schoel B, Gulle H, Kaufmann S, Wagner H (1990) Primary responses of human T cells to mycobacteria: a frequent set of γ/δ T cells are stimulated by protease-resistant ligands. Eur J Immunol 20: 1175–1179

    Article  PubMed  CAS  Google Scholar 

  62. Garcia VE, Sieling PA, Gong J, Barnes PF, Uyemura K, Tanaka Y, Bloom BR, Morita CT, Modlin RL (1997) Single-cell cytokine analysis of gamma delta T cell responses to non-peptide mycobacterial antigens. J Immunol 159: 1328–1335

    PubMed  CAS  Google Scholar 

  63. D’Souza CD, Cooper AM, Frank AA, Mazzaccaro RJ, Bloom BR, Orme IM (1997) An anti-inflammatory role for gamma delta T lymphocytes in acquired immunity to Mycobacterium tuberculosis. J Immunol 158: 1217–1221

    Google Scholar 

  64. Hsieh B, Schrenzel MD, Mulvania T, Lepper HD, DiMolfetto-Landon L, Ferrick DA (1996) In vivo cytokine production in murine listeriosis. Evidence for immunoregulation by gamma delta+ T cells. J Immunol 156: 232–237

    PubMed  CAS  Google Scholar 

  65. Flesch IE, Kaufmann SH (1994) Role of macrophages and alpha beta T lymphocytes in early interleukin 10 production during Listeria monocytogenes infection. Int Immunol 6: 463–468

    Article  PubMed  CAS  Google Scholar 

  66. Smith RA, Kreeger JM, Alvarez AJ, Goin JC, Davis WC, Whipple DL, Estes DM (1999) Role of CD8+; and WC-1+ gamma/delta T cells in resistance to Mycobacterium bovis infection in the SCID-bo mouse. J Leukoc Biol 65: 28–34

    PubMed  CAS  Google Scholar 

  67. Tanaka S, Itohara S, Sato M, Taniguchi T, Yokomizo Y (2000) Reduced formation of granulomata in gamma(delta) T cell knockout BALB/c mice inoculated with Mycobacterium avium subsp. paratuberculosis. Vet Pathol 37: 415–421

    Article  CAS  Google Scholar 

  68. Smyth AJ, Welsh MD, Girvin RM, Pollock JM (2001) In vitro responsiveness of gammadelta T cells from Mycobacterium bovis-infected cattle to mycobacterial antigens: predominant involvement of WC1(+) cells. Infect Immun 69: 89–96

    Article  PubMed  CAS  Google Scholar 

  69. Mustafa T, Bjune TG, Jonsson R, Pando RH, Nilsen R (2001) Increased expression of fas ligand in human tuberculosis and leprosy lesions: a potential novel mechanism of immune evasion in mycobacterial infection. Scand J Immunol 54: 630–639

    Article  PubMed  CAS  Google Scholar 

  70. Dockrell DH (2001) Apoptotic cell death in the pathogenesis of infectious diseases. J Infect 42: 227–234

    Article  PubMed  CAS  Google Scholar 

  71. Gao LY, Kwaik YA (2000) The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol 8: 306–313

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Koets, A.P. (2003). Mycobacterial heat shock proteins and the bovine immune system. In: van Eden, W. (eds) Heat Shock Proteins and Inflammation. Progress in Inflammation Research. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8028-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8028-2_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9410-4

  • Online ISBN: 978-3-0348-8028-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics