Skip to main content

Random Walks on Sierpiński Graphs: Hyperbolicity and Stochastic Homogenization

  • Conference paper
Fractals in Graz 2001

Part of the book series: Trends in Mathematics ((TM))

Abstract

We introduce two new techniques to the analysis on fractals. One is based on the presentation of the fractal as the boundary of a countable Gromov hyperbolic graph, whereas the other one consists in taking all possible “backward” extensions of the above hyperbolic graph and considering them as the classes of a discrete equivalence relation on an appropriate compact space. Illustrating these techniques on the example of the Sierpiński gasket (the associated hyperbolic graph is called the Sierpiński graph), we show that the Sierpiński gasket can be identified with the Martin and the Poisson boundaries for fairly general classes of Markov chains on the Sierpiński graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. R. Adams, Trees and amenable equivalence relations, Ergodic Theory Dynam. Systems, 10 (1990), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Ancona, Théorie du potentiel sur les graphes et les variétés, in: Ecole d’été de Probabilités de Saint-Flour XVIII 1988, Lecture Notes in Math., 1427, Springer, Berlin, 1990,1–112.

    Chapter  Google Scholar 

  3. M. T. Anderson, R. Schoen, Positive harmonic functions on complete manifolds of negative curvature, Ann. of Math. (2), 121 (1985), 429–461.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. T. Barlow, R. F. Bass, Random walks on graphical Sierpinski carpets, in: Random walks and discrete potential theory (Cortona, 1997), 26–55, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  5. M. T. Barlow, E. A. Perkins, Brownian motion on the Sierpiński gasket, Probab. Theory Related Fields, 79 (1988), 543–623.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Bartholdi, R. Grigorchuk, V. Nekrashevich, From fractal groups to fractal sets, these Proceedings.

    Google Scholar 

  7. N. Benakli, I. Kapovich, Boundaries of hyperbolic groups, preprint (2002).

    Google Scholar 

  8. O. Ben-Bassat, R. S. Strichartz, A. Teplyaev, What is not in the domain of the Laplacian on Sierpiński gasket type fractals, J. Funct. Anal., 166 (1999), 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. W. Cannon, The theory of negatively curved spaces and groups, in: Ergodic theory, symbolic dynamics, and hyperbolic spaces. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989. Edited by T. Bedford, M. Keane and C. Series, Oxford University Press, New York, 1991, 315–369.

    Google Scholar 

  10. P. Cartier, Fonctions harmoniques sur un arbre, in: Convegno di Calcolo delle Probabilità, INDAM, Rome, 1971, Symposia Mathematica, 9, Academic Press, London, 1972,203–270.

    Google Scholar 

  11. D. I. Cartwright, V. A. Kaimanovich, W. Woess, Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble), 44 (1994), 1243–1288.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Ceccherini-Silberstein, R. I. Grigorchuk, P. de la Harpe, Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces, Proc. Steklov Inst. Math., 224 (1999), 57–97.

    Google Scholar 

  13. P. Chassaing, G. Letac, M. Mora, Brocot sequences and random walks in S L(2, ℝ), in: Probability measures on groups, VII (Oberwolfach, 1983), Lecture Notes in Math., 1064, Springer, Berlin, 1984, 36–48.

    Chapter  Google Scholar 

  14. I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodic theory, Grundlehren der Mathematischen Wissenshaften, 245, Springer-Verlag, New York, 1982.

    Book  MATH  Google Scholar 

  15. M. Denker, S. Koch, A Poisson formula for harmonic functions on the Sierpiński gasket, Forum Math., 12 (2000), 435–448.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Denker, H. Sato, Sierpiński gasket as a Martin boundary. I. Martin kernels, Potential Anal., 14 (2001), 211–232.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Denker, H. Sato, Sierpiński gasket as a Martin boundary. II. The intrinsic metric, Publ. Res. Inst. Math. Sci., 35 (1999), 769–794.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, Trans. Amer. Math. Soc., 1984, 787–794.

    Google Scholar 

  19. G. Elek, The l p -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata, 68 (1997), 263–279.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Farb, L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups. With an appendix by Daryl Cooper, Invent. Math., 131 (1998), 419–451.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Funct. Anal., 51 (1983), 285–311.

    Article  MathSciNet  MATH  Google Scholar 

  22. Sur les groupes hyperboliques d’après Mikhael Gromov, Edited by E. Ghys and P. de la Harpe. Progress in Mathematics, 83, Birkhäuser, Boston, MA, 1990.

    Google Scholar 

  23. P. J. Grabner, W. Woess, Functional iterations and periodic oscillations for simple random walk on the Sierpiński graph, Stochastic Processes. Appl., 69 (1997), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Gromov, Hyperbolic groups, in: Essays in group theory, Math. Sci. Res. Inst. Publ., 8,Springer, New York, 1987, 75–263.

    Chapter  Google Scholar 

  25. Y. Guivarc’h, J. Le Jan, Asymptotic winding of the geodesic flow on modular surfaces and continued fractions,Ann. Sci. Ecole Norm. Sup. (4), 26 (1993), 23–50.

    MathSciNet  MATH  Google Scholar 

  26. B. M. Hambly, Brownian motion on a homogeneous random fractal, Probab, Theory Rel. Fields, 94 (1992), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  27. B. M. Hambly, T. Kumagai, S. Kusuoka, X. Y. Zhou, Transition density estimates for diffusion processes on homogeneous random Sierpinski carpets, J. Math. Soc. Japan 52 (2000), 373–408.

    Article  MathSciNet  MATH  Google Scholar 

  28. O. D. Jones, Transition probabilities for the simple random walk on the Sierpiński graph, Stochastic Process. Appl. 61 (1996), 45–69.

    Article  MathSciNet  MATH  Google Scholar 

  29. V. A. Kaimanovich, Measure-theoretical boundaries of Markov chains, 0–2 laws and entropy, in: Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum, New York, 1992, 145–180.

    Google Scholar 

  30. V. A. Kaimanovich, Dirichlet norms, capacities and generalized isoperimetric inequalities for Markov operators, Potential Anal., 1 (1992), 61–82.

    Article  MathSciNet  MATH  Google Scholar 

  31. V. A. Kaimanovich, Boundaries of invariant Markov operators: the identification problem, in: Ergodic theory of Ergodic theory of ℤd actions, Warwick, 1993–1994, London Math. Soc. Lecture Note Ser., 228, Cambridge University Press, Cambridge, 1996, 127–176.

    Google Scholar 

  32. V. A. Kaimanovich, Hausdorff dimension of the harmonic measure on trees, Ergodic Theory Dynam. Systems, 18 (1998), 631–660.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2), 152 (2000), 659–692.

    Article  MathSciNet  MATH  Google Scholar 

  34. V. A. Kaimanovich, Equivalence relations with amenable leaves need not be amenable, in: Topology, ergodic theory, real algebraic geometry, Amer. Math. Soc. Transl. Ser. 2, 202, Amer. Math. Soc., Providence, RI, 2001, 151–166.

    Google Scholar 

  35. V. A. Kaimanovich, Fractals and hyperbolicity, preprint (2002).

    Google Scholar 

  36. V. A. Kaimanovich, Random walks on equivalence relations, preprint (2002).

    Google Scholar 

  37. V. A. Kaimanovich, M. Lyubich, Conformal and harmonic measures on laminations associated with rational maps, preprint (2001).

    Google Scholar 

  38. V. A. Kaimanovich, K. Schmidt, Ergodicity of cocycles. I. General theory, preprint (2001).

    Google Scholar 

  39. V. A. Kaimanovich, A. M. Vershik, Random walks on discrete groups: boundary and entropy,Ann. Probab., 11 (1983), 457–490.

    Article  MathSciNet  MATH  Google Scholar 

  40. V. A. Kaimanovich, W. Woess, Boundary end entropy of space homogeneous Markov chains, Ann. Probab., 30 (2002).

    Google Scholar 

  41. A. Katok, Four applications of conformal equivalence to geometry and dynamics, Ergodic Theory Dynam. Systems, 8* (1988), Charles Conley Memorial Issue, 139–152.

    Article  MathSciNet  Google Scholar 

  42. S. Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci., 25 (1989), 659–680.

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Ledrappier, Applications of dynamics to compact manifolds of negative curvature, in: Proceedings of the International Congress of Mathematicians (Zürich, 1994), Birkhäuser, Basel, 1995, 1195–1202.

    Chapter  Google Scholar 

  44. F. Ledrappier, Some asymptotic properties of random walks on free groups, in: Topics in probability and Lie groups: boundary theory, CRM Proc. Lecture Notes, 28, Amer. Math. Soc., Providence, RI, 2001, 117–152.

    Google Scholar 

  45. M. Lyubich, Y. Minsky, Laminations in holomorphic dynamics, J. Differential Geom., 47 (1997), 17–94.

    MathSciNet  MATH  Google Scholar 

  46. M. Lyubich, A. Volberg, A comparison of harmonic and maximal measures for rational functions, in: Approximation by solutions of partial differential equations (Hanstholm, 1991), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci, 365, Kluwer, Dordrecht, 1992, 127–139.

    Chapter  Google Scholar 

  47. M. Lyubich, A. Volberg, A comparison of harmonic and balanced measures on Cantor repellers, in: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl., Special Issue, 1995, 379–399.

    Google Scholar 

  48. N. G. Makarov, A. L. Volberg, On the harmonic measure of discontinuous fractals, LOMI preprint E-6–86, 1986.

    Google Scholar 

  49. F. Przytycki, M. Urbański, A. Zdunik, Harmonic, Gibbs and Hausdorff measures on repellers for holomorphic maps. I, Ann. of Math. (2), 130 (1989), 1–40.

    Article  MATH  Google Scholar 

  50. M. Rosenblatt, Markov processes. Structure and asymptotic behaviour, Grundlehren der Mathematischen Wissenschaften, 184, Springer-Verlag, New York - Heidelberg, 1971.

    Book  Google Scholar 

  51. C. Series, Martin boundaries of random walks on Fuchsian groups, Israel J. Math., 44 (1983), 221–242.

    Article  MathSciNet  MATH  Google Scholar 

  52. C. Series, Geometrical methods of symbolic coding, in: Ergodic theory, symbolic dynamics, and hyperbolic spaces. Papers from the Workshop on Hyperbolic Geometry and Ergodic Theory held in Trieste, April 17–28, 1989. Edited by T. Bedford, M. Keane and C. Series, Oxford University Press, New York, 1991, 125–151.

    Google Scholar 

  53. E. Teufl, The average displacement of the simple random walk on the Sierpiński graph, preprint (2001).

    Google Scholar 

  54. A. M. Vershik, Dynamic theory of growth in groups: entropy, boundaries, examples, Russian Math. Surveys, 55 (2000), no. 4, 667–733.

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Volberg, On the dimension of harmonic measure of Cantor repellers, Michigan Math. J., 40 (1993), 239–258.

    Article  MathSciNet  MATH  Google Scholar 

  56. W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, 138, Cambridge University Press, Cambridge, 2000.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Kaimanovich, V.A. (2003). Random Walks on Sierpiński Graphs: Hyperbolicity and Stochastic Homogenization. In: Grabner, P., Woess, W. (eds) Fractals in Graz 2001. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8014-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8014-5_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9403-6

  • Online ISBN: 978-3-0348-8014-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics