Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

In this paper, an overview of the calculation of synthetic seismograms using the Gaussian beam method is presented accompanied by some representative applications and new extensions of the method. Since caustics are a frequent occurrence in seismic wave propagation, modifications to ray theory are often necessary. In the Gaussian beam method, a summation of paraxial Gaussian beams is used to describe the propagation of high-frequency wave fields in smoothly varying inhomogeneous media. Since the beam components are always nonsingular, the method provides stable results over a range of beam parameters. The method has been shown, however, to perform better for some problems when different combinations of beam parameters are used. Nonetheless, with a better understanding of the method as well as new extensions, the summation of Gaussian beams will continue to be a useful tool for the modeling of high-frequency seismic waves in heterogeneous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aki, K. and Richards, P. G., Quantitative Seismology (Freeman, San Francisco, 1980).

    Google Scholar 

  • Alkhalifah, T. (1995), Gaussian Beam Depth Migration for Anisotropic Media, Geophysics 60, 1474–1484.

    Google Scholar 

  • Babich, V. M. and Pankratova, T. F, On discontinuities of Green’s function of the wave equation with variable coefficient, In Problems of Mathematical Physics Vol. 6 (ed. Babich, V.M.) (Leningrad Univ. Press, Leningrad, 1973), pp. 9–27.

    Google Scholar 

  • Babich, V. M. and Popov, M. M. (1989), Gaussian Summation Method (Review), Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika 32, 1447–1466 (translated in Radiophysics and Quantum Electronics 32, 1063–1081, 1990).

    Google Scholar 

  • Bastiaans, M. J. (1980), Gabor’s Expansion of a Signal into Gaussian Elementary Signals, Proc. IEEE 68, 538–539.

    Google Scholar 

  • Bastiaans, M. J. and Geilen, M. C. (1996), On the Discrete Gabor Transform and the Discrete Zak Transform, Signal Proc. 49, 151–166.

    Google Scholar 

  • Bastiaans, M. J., Gabor’s Signal Expansion in Optics. In Gabor Analysis and Algorithms (eds. Feichtinger, H.G. and Strohmer, T.) (Birkhäuser, Boston, 1998) pp. 427–451.

    Google Scholar 

  • Ben-Menahem, A. and Beydoun, W. B. (1985), Range of Validity of Seismic Ray and Beam Methods in General Inhomogeneous Media-I. General Theory, Geophys. J. R. Astr. Soc. 82, 207–234.

    Google Scholar 

  • Benites, R. and Aki, K. (1989), Boundary Integral-Gaussian Beam Method for Seismic Wave Scattering: SH Waves in Two-Dimensional Media, J. Acoust. Soc. Am. 86, 375–386.

    Google Scholar 

  • Benites, R. and Alu, K. (1994), Ground Motion at Mountains and Sedimentary Basins with Vertical Seismic Velocity Gradient, Geophys. J. Int. 116, 95–118.

    Google Scholar 

  • Beydoun, W. B. and Ben-Menahem, A. (1985), Range of Validity of Seismic Ray and Beam Methods in General Inhomogeneous Media-II. A Canonical Problem, Geophys. J. R. Astr. Soc. 82, 235–262.

    Google Scholar 

  • Cervenf, V., Seismic Wave Fields in Structurally Complicated Media (Ray and Gaussian Beam Approaches) (Lecture Notes, Universiteit Utrecht, Vening-Meinesz laboratory, Utrecht, 1981).

    Google Scholar 

  • Cervenv, V. (1982), Expansion of a Plane Wave into Gaussian Beams, Studia Geophys. Geod. 26, 120–131.

    Google Scholar 

  • Cervenv, V. (1983), Synthetic Body Wave Seismograms for Laterally Varying Layered Structures by the Gaussian Beam Method, Geophys. J. R. Astr. Soc. 73, 389–426.

    Google Scholar 

  • Cervenv, V. (1985a), Gaussian Beam Synthetic Seismograms, J. Geophys. 58, 44–72.

    Google Scholar 

  • Cervenf, V., The application of ray tracing to the numerical modeling of seismic wave fields in complex structures. In Seismic Shear Waves (ed. Dohr, G.) (Geophysical Press, London, 1985b) pp. 1–124.

    Google Scholar 

  • CERVENf, V. (2001), Seismic Ray Theory, Cambridge Univ. Press.

    Google Scholar 

  • Cervenf, V. and Hron, F. (1980), The Ray Series Method and Dynamic Ray Tracing Systems in 3-D Inhomogeneous Media, Bull. Seismol. Soc. Am. 70, 47–77.

    Google Scholar 

  • Cervenv, V. and Klimes, L. (1984), Synthetic Body Wave Seismograms for Three-dimensional Laterally Varying Media, Geophys. J. R. Astr. Soc. 79, 119–133.

    Google Scholar 

  • Cervenf, V., PleinerovÁ, J., Klimes, L., and PsencÍk, I. (1987), High frequency Radiation from Earthquake Sources in Laterally Varying Layered Structures, Geophys. J. R. Astr. Soc. 88, 43–79.

    Google Scholar 

  • Cerveny, V., Popov, M. M. and PsencÍk, I. (1982), Computation of Wave Fields in Inhomogeneous Media Gaussian Beam Approach, Geophys. J. R. Astr. Soc. 70, 109–128.

    Google Scholar 

  • Cervenv, V. and PsencÍK, I. (1983a), Gaussian Beams in Two-dimensional Elastic Inhomogeneous Media, Geophys. J. R. Astr. Soc. 72, 417–433.

    Google Scholar 

  • Cervenf, V. and PsencÍk, I. (1983b), Gaussian Beams and Paraxial Ray Approximation in Three-dimensional Elastic Inhomogeneous Media, J. Geophys. 53, 1–15.

    Google Scholar 

  • Cervenv, V. and Psencdk, I. (1984), Gaussian Beams in Elastic 2-D Laterally Varying Layered Structures, Geophys. J. R. Astr. Soc. 78, 65–91.

    Google Scholar 

  • Chen, C. H., Teng, T. L., and Gung, Y. C. (1998) Ten-second Love-wave Propagation and Strong Ground Motions in Taiwan, J. Geophys. Res. 103, 21,253–21,273.

    Google Scholar 

  • Cormier, V. F. (1987), Focusing and Defocusing of Teleseismic P Waves by Known Three-dimensional Structure Beneath Pahute Mesa, Nevada Test Site, Bull. Seismol. Soc. Am. 77, 1688–1703.

    Google Scholar 

  • Cormier, V. F. (1989), Slab Diffraction of S Waves, J. Geophys. Res. 94, 3006–3024.

    Google Scholar 

  • Cormier, V. F. (1995), Time-domain modeling of PKIKP Precursors for Constraints on the Heterogeneity in the Lower Most Mantle, Geophys. J. Int. 121, 725–736.

    Google Scholar 

  • Cormier, V. F. and Richards, P. G. (1977), Full-wave Theory Applied to a Discontinuous Velocity Increase: The Inner Core Boundary, J. of Geophys. 43, 3–31.

    Google Scholar 

  • Cormier, V. F. and Spudich, P. (1984), Amplification of Ground Motion and Waveform Complexity in Fault Zones: Examples from the San Andreas and Calaveras Faults, Geophys. J. R. Astr. Soc. 79, 135–152.

    Google Scholar 

  • Cormier, V. F. and Su, W. J. (1994), Effects of Three-dimensional Crustal Structure on the Estimated Slip History and Ground Motion of the Loma Prieta Earthquake, Bull. Seismol. Soc. Am. 84, 284–294. COSTA, C., RAZ, S., and KOSLOFF, D. (1989), Gaussian Beam Migration, 59th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1169–1171.

    Google Scholar 

  • Daubechies, I. (1990), The Wavelet Transform, Time Frequency Localization and Signal Analysis, IEEE Trans. Info. Theory 36, 961–1005.

    Google Scholar 

  • Deschamps, G. A. (1971), Gaussian Beam as a Bundle of Complex Rays, Electron. Lett. 7, 684. DEZHONG, Y. (1995), Study of Complex Huygens Principle, Int. J. Infrared and Millimeter Waves 6,831— 838.

    Google Scholar 

  • Einziger, P. D., Raz, S., and Shapira, M. (1986), Gabor Representation and Aperture Theory, J. Opt. Soc. Am. A 3, 508–522.

    Google Scholar 

  • Farra, V. and Madariaga, R. (1987), Seismic Waveform Modeling in Heterogeneous Media by Ray Perturbation Theory, J. Geophys. Res. 92, 2697–2712.

    Google Scholar 

  • Felsen, L. B. (1984), Geometrical Theory of Diffraction, Evanescent Waves, Complex Rays and Gaussian Beams, Geophys. J. R. Astr. Soc. 79, 77–88.

    Google Scholar 

  • Felsen, L. B., Klosner, J. M., Lu, I. T., and GROSSFELD, Z. (1991), Source Field Modeling by Self-consistent Gaussian Beam Superposition (Two-dimensional), J. Acoust. Soc. Am. 89, 63–72.

    Google Scholar 

  • Foster, D. J. and Huang, J. I. (1991), Global Asymptotic Solutions of the Wave Equation, Geophys. J. Int. 105, 163–171.

    Google Scholar 

  • Friederich, W. (1989), A New Approach to Gaussian Beams on a Sphere: Theory and Application to Long-Period Surface Wave Propagation, Geophys. J. Int. 99, 259–271.

    Google Scholar 

  • Gabillet, Y., Schroeder, H., Daigle, G., and L’ESPERANCE, A. (1992), Application of the Gaussian Beam Approach to Sound Propagation in the Atmosphere: Theory and Experiments, J. Acoust. Soc. Am. 93, 3105–3116.

    Google Scholar 

  • Gabor, D. (1946), Theory of Communication, J. Inst. Elec. Eng. 93-III, 429–457.

    Google Scholar 

  • Gao, X. J., Felsen, L. B., and Lu, I. T., Spectral options to improve the paraxial narrow Gaussian beam algorithm for critical reflection and head waves. In Computational Acoustics (eds. Lee, D., Cakmak, R., and Vichnevetsky, R.) (Elsevier, New York, 1990) pp. 149–166.

    Google Scholar 

  • George, Th., Virieux, J., and Madariaga, R. (1987), Seismic Wave Synthesis by Gaussian Beam Summation: A Comparison with Finite Differences, Geophysics 52, 1065–1073.

    Google Scholar 

  • Grikurov, V. E. and Popov, M. M. (1983), Summation of Gaussian Beams in a Surface Waveguide, Wave Motion 5, 225–233.

    Google Scholar 

  • Hanyga, A. (1986), Gaussian Beams in Anisotropic Elastic Media, Geophys. J. R. Astr. Soc. 85, 473–503.

    Google Scholar 

  • Hale, D. (1992a), Migration by the Kirchhoff Slant Stack, and Gaussian Beam Methods, CWP-126, Center for Wave Phenomena, Colorado School of Mines.

    Google Scholar 

  • Hale, D. (1992b), Computational Aspects of Gaussian Beam Migration, CWP-127, Center for Wave Phenomena, Colorado School of Mines.

    Google Scholar 

  • Heyman, E. (1989), Complex Source Pulsed Beam Representation of Transient Radiation, Wave Motion 11, 337–349.

    Google Scholar 

  • Hill, N. R. (1990), Gaussian Beam Migration, Geophysics 55, 1416–1428.

    Google Scholar 

  • Hill, N. R. (2001), Prestack Gaussian Beam Depth Migration, Geophysics, 66, 1240–1250.

    Google Scholar 

  • Hill, N. R., Watson, T. H., Hassler, M. H., and Sisemore, L. K. (1991), Salt flank Imaging Using Gaussian Beam Migration, 61st Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1178–1180.

    Google Scholar 

  • Jensen, F. B., Kuperman, W. A., Porter, M. B., and Schmidt, H., Computational ocean acoustics. In AIP Series in Modern Acoustics and Signal Processing (ed. Beyer, R.T.), (AIP Press, New York, 1994) pp. 149–202.

    Google Scholar 

  • Jobert, N. (1986), Mantle Wave Propagation Anomalies on Laterally Heterogeneous Global Models of the Earth by Gaussian Beam Synthesis, Ann. Geophys. 4, 261–270

    Google Scholar 

  • JOBERT, N. (1987), Mantle Wave Deviations from “Pure-Path” Propagation on Aspherical Models of the Earth by Gaussian Beam Waveform Synthesis, Phys. Earth Planet Int. 47, 253–266.

    Google Scholar 

  • Jobert, N. and Jobert, G. (1983), An Approximation of Ray Theory to the Propagation of Waves along a Laterally Heterogeneous Spherical Surface, Geophys. Res. Lett. 10, 1148–1151.

    Google Scholar 

  • Katchalov, A. P. and Popov, M. M. (1981), Application of the Method of Summation of Gaussian Beams for Calculation of High frequency Wave Fields, Soy. Phys. Dokl. 26, 604–606.

    Google Scholar 

  • Katchalov, A. P. and Popov, M.M. (1985), Application of the Gaussian Beam Method to Elasticity Theory, Geophys. J. R. Astr. Soc. 81, 205–214.

    Google Scholar 

  • KATCHALOV, A. P. and Porov, M. M. (1988), Gaussian Beam Methods and Theoretical Seismograms, Geophys. J. 93, 465–475.

    Google Scholar 

  • Katchalov, A. P., Porov, M. M., and PsencÍk, I. (1983), Applicability of the Gaussian Beams Summation Method to Problems with Angular Points on the Boundaries, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR 128, 65–71 (translated in J. Soy. Math., 2406–2410, 1985).

    Google Scholar 

  • Kato, K., Aki, K. and Teng, T. L. (1993), 3-D Simulations of Surface Wave Propagation in the Kanto Sedimentary Basin, Japan-Part 1: Application of the Surface Wave, Gaussian Beam Method, Bull. Seismol. Soc. Am. 83, 1676–1699.

    Google Scholar 

  • Keller, J. B. and Streifer, W. (1971), Complex Rays with an Application to Gaussian Beams, J. Opt. Soc. Am. 61, 40–43.

    Google Scholar 

  • Klauder, J. R., (1987a), Global, Uniform, Asymptotic Wave-equation Solutions for Large Wavenumbers, Ann. Phys. 180, 108–151.

    Google Scholar 

  • Klauder, J. R. Some recent results on wave equations, path integrals, and semiclassical approximations. In Random Media (ed. Papanicolau, G.) (Springer-Verlag, New York, 1987b) pp. 163–182.

    Google Scholar 

  • Klimes, L. (1984a), Expansion of a High frequency Time-harmonic Wave Field Given on an Initial Surface into Gaussian Beams, Geophys. J. R. Astr. Soc. 79, 105–118.

    Google Scholar 

  • Klimes, L. (1984b), The Relation Between Gaussian Beams and Maslov Asymptotic Theory, Studia Geoph. et Geod. 28, 237–247.

    Google Scholar 

  • Klimes, L. (1986), Discretization Error for the Superposition of Gaussian Beams, Geophys. J. R. Astr. Soc. 86, 531–551.

    Google Scholar 

  • Klimes, L. (1989a), Gaussian Packets in the Computation of Seismic Wave Fields, Geophys. J. Int. 99, 421–433.

    Google Scholar 

  • Kliivtes, L. (1989b), Optimization of the Shape of Gaussian Beams of a Fixed Length, Studia Geoph. et Geod. 33, 146–163.

    Google Scholar 

  • Klosner, J. M., Felsen, L. B., Lu, I. T., and Grossfeld, H. (1992), Three-dimensional Source Field Modeling by Self-consistent Gaussian Beam Superposition, J. Acoust. Soc. Am. 91, 1809–1822.

    Google Scholar 

  • KONOPASKOVA, J. and CERVENŸ, V. (1984a), Numerical Modelling of Time-harmonic Seismic Wave Fields in Simple Structures by the Gaussian Beam Method. Part I., Studia Geoph. et Geod. 28, 19–35.

    Google Scholar 

  • KONOPASKOVA, J. and CERVENY, V. (1984b), Numerical Modelling of Time-harmonic Seismic Wave Fields in Simple Structures by the Gaussian Beam Method. Part II., Studia Geoph. et Geod. 28, 113–128.

    Google Scholar 

  • KRAVTSOV, Y. A., FORBES, G. W., and ASATRYAN, A. A., Theory and applications of complex rays. In Progress in Optics (ed. Wolf, E.) (Elsevier, New York, 1999), pp. 2–62.

    Google Scholar 

  • LAZARATOS, S. K. and HARRIS, J. M. (1990), Radon Transform/Gaussian Beam Migration, 60th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 1178–1180.

    Google Scholar 

  • Leborgne, S., Madariaga, R., and Farra, V. (1999), Body Waveform Modeling of East Mediterranean Earthquakes at Intermediate Distance (17°-30°) with a Gaussian Beam Summation Method, J. Geophys. Res. 104, 28813–28828.

    Google Scholar 

  • Lu, I. T., FELSEN, L. B. and RUAN, Y. Z. (1987), Spectral Aspects of the Gaussian Beam Method: Reflection from a Homogeneous Half-space, Geophys. J. R. Astr. Soc. 89, 915–932.

    Google Scholar 

  • Lugara, D. and Letrou, C. (1998), Alternative to Gabor’s Representation of Plane Aperture Radiation, Electron. Lett. 34, 2286–2287.

    Google Scholar 

  • Marciel, J. J. and Felsen, L. B., (1989), Systematic Study of Fields Due to Extended Apertures by Gaussian Beam Discretization, IEEE Trans. on Antennas and Propagation 37, 884–892.

    Google Scholar 

  • Madariaga, R. (1984), Gaussian Beam Synthetic Seismograms in a Vertically Varying Medium, Geophys. J. R. Astr. Soc. 79, 589–612.

    Google Scholar 

  • Madariaga, R. and Papadimitriou, P. (1985), Gaussian Beam Modelling of Upper Mantle Phases, Ann. Geophys. 3, 799–812.

    Google Scholar 

  • Melamed, T. (1997), Phase-space Beam Summation: A Local Spectrum Analysis of Time Dependent Radiation, J. Electromagnetic Waves and Appl. 11, 739–773.

    Google Scholar 

  • Muller, G. (1984), Efficient Calculation of Gaussian-beam Seismograms for Two-dimensional Inhomogeneous Media, Geophys. J. R. Astr. soc. 79, 153–166.

    Google Scholar 

  • Norris, A. N. (1986), Complex Point-source Representation of Real Point Sources and the Gaussian Beam Summation Method, J. Opt. Soc. Am. A 3, 2005–2010.

    Google Scholar 

  • Norris, A. N. and Hansen, T. B., (1997), Exact Complex Source Representations of Time-harmonic Radiation, Wave Motion 25, 127–141.

    Google Scholar 

  • Nowack, R. L. (1990), Perturbation methods for rays and beams. In Computational Acoustics, (eds. Lee, D., Cakmak, R. and Vichnevetsky, R.) (Elsevier, New York, 1990) pp. 167–180.

    Google Scholar 

  • Nowack, R. L. and Aki, K. (1984), The Two-dimensional Gaussian Beam Synthetic Method: Testing and Application, J. Geophys. Res. 89, 7797–7819.

    Google Scholar 

  • Nowack, R. L. and Aki, K. (1986), Iterative Inversion for Velocity Using Waveform Data, Geophys. J. R. Astr. Soc. 87, 701–730.

    Google Scholar 

  • Nowack, R. L. and Cormier, V. F. (1985), Computed Amplitudes Using Ray and Beam Methods for a Known 3-D Structure, EOS Trans. Am. Geophys. Un. 66, 980.

    Google Scholar 

  • Nowack, R. L. and Lutter, W. J. (1988), Linearized Rays, Amplitude and Inversion, Pure Appl. Geophys. 128, 401–421.

    Google Scholar 

  • Nowack, R. L. and Stacy, S. (2002), Synthetic Seismograms and Wide-angle Seismic Attributes from the Gaussian Beam and Reflectivity Methods for Models with Interfaces and Gradients, Pure Appl. Geophys., 159, 1447–1464.

    Google Scholar 

  • Popov, M. M. (1981), A New Method of Computing Wave Fields in the High frequency Approximation, Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR 104, 195–216 (translated in J. of Sov. Math. 20, 1869–1882, 1982).

    Google Scholar 

  • Popov, M. M. (1982), A New Method of Computation of Wave Fields Using Gaussian Beams, Wave Motion 4, 85–97.

    Google Scholar 

  • Popov, M. M. and PSENCík, I. (1978), Computation of Ray Amplitudes in Inhomogeneous Media with Curved Interfaces, Studia Geophys. Geod. 22, 248–258.

    Google Scholar 

  • Porov, M. M., PÑEncdk, I., and Cerveny, V. (1980), Uniform Ray Asymptotics for Seismic Wave Fields in Laterally Inhomogeneous Media (Abstract), Prog. Abstr. XVII General Assembly of the European Seismological Commission, Hungarian Geophysical Society, Budapest, p. 143.

    Google Scholar 

  • Porter, M. B. and Bucker, H. P. (1987), Gaussian Beam Tracing for Computing Ocean Acoustic Fields, J. Acoust. Soc. Am. 82, 1349–1359.

    Google Scholar 

  • Qian, S. and Chen, D. (1993), Discrete Gabor Transform, IEEE Trans. Signal Proc. 41, 2429–2438.

    Google Scholar 

  • Qu, J., Teng, T. L., and Wang, J. (1994), Modeling of Short-period Surface-wave Propagation in Southern California, Bull. Seismol. Soc. Am. 84, 596–612.

    Google Scholar 

  • Raz, S. (1987), Beam Stacking: A Generalized Preprocessing Technique, Geophysics 52, 1199–1210.

    Google Scholar 

  • Sekiguchi, S. (1992), Amplitude Distribution of Seismic Waves for Laterally Heterogeneous Structures Including a Subducting Slab, Geophys. J. Int. 111, 448–464.

    Google Scholar 

  • Steinberg, B. Z., Heyman, E., and Felsen, L.B. (1991a), Phase-space Beam Summation for Time-harmonic Radiation from Large Apertures, J. Opt. Soc. Am. A 8, 41–59.

    Google Scholar 

  • Steinberg, B. Z., Heyman, E., and Felsen, L.B. (1991b), Phase-space Beam Summation for Time Dependent Radiation from Large Apertures: Continuous Parameterization, J. Opt. Soc. Am. A 8, 943–958.

    Google Scholar 

  • Thomson, C. J. (1997), Complex Rays and Wavepackets for Decaying Signals in Inhomogeneous, Anisotropic and Anelastic Media, Studia Geophys. Geod. 41, 345–381.

    Google Scholar 

  • Thomson, C. J. (2001), Seismic Coherent States and Ray Geometrical Spreading, Geophys. J. Int. 144, 320–342.

    Google Scholar 

  • Wang, X. and Waltham, D. (1995a), The Stable-beam Seismic Modeling Method, Geophys. Prosp. 43, 939–961.

    Google Scholar 

  • Wang, X. and Waltham, D. (1995b), Seismic Modeling Over 3-D Homogeneous Layered Structure—Summation of Gaussian Beams, Geophys. J. Int. 122, 161–174.

    Google Scholar 

  • Weber, M. (1988a), Computation of Body-wave Seismograms in Absorbing 2-D Media Using the Gaussian Beam Method: Comparison with Exact Methods, Geophys. J. 92, 9–24.

    Google Scholar 

  • Weber, M. (1988b), Application of the Gaussian Beam Method in Refraction Seismology - Urach Revisited, Geophys. J. 92, 25–31.

    Google Scholar 

  • Weber, M. (1990), Subduction Zones-Their Influence on Traveltimes and Amplitudes of P Waves, Geophys. J. Int. 101, 529–544.

    Google Scholar 

  • Weber, M. (1993), P-wave and S-wave reflections from Anomalies in the Lower Most Mantle, Geophys. J. Int. 115, 183–210.

    Google Scholar 

  • Weber, M. and Davis, J. P. (1990), Evidence of a Laterally Variable Lower Mantle Structure from P Waves and S Waves, Geophys. J. Int. 102, 231–255.

    Google Scholar 

  • Wexler, J. and Raz, S. (1990), Discrete Gabor Expansions, Signal Proc. 21, 207–221.

    Google Scholar 

  • White, B. S., Norris, A., Bayliss, A., and Burridge, R. (1987), Some Remarks on the Gaussian Beam Summation Method, Geophys. J. R. Astr. Soc. 89, 579–636.

    Google Scholar 

  • Wu, R. S. (1985), Gaussian Beams, Complex Rays, and the Analytic Extension of the Green’s Function in Smoothly Inhomogeneous Media, Geophys. J. R. Astr. Soc. 83, 93–110.

    Google Scholar 

  • Yomogida, K. (1985), Gaussian Beams for Surface Waves in Laterally Slowly-varying Media, Geophys. J. R. Astr. Soc. 82, 511–533.

    Google Scholar 

  • Yomogida, K. (1987), Gaussian Beams for Surface Waves in Transversely Isotropic Media, Geophys. J. R. Astr. Soc. 88, 297–304.

    Google Scholar 

  • Yomogida, K. and Aki, K. (1985), Waveform Synthesis of Surface Waves in a Laterally Heterogeneous Earth by the Gaussian-beam Method, J. Geophys. Res. 90, 7665–7688.

    Google Scholar 

  • Yomogida, K. and Aki, K. (1987), Amplitude and Phase Data Inversion for Phase Velocity Anomalies in the Pacific Ocean Basin, Geophys. J. R. Astr. Soc. 88, 161–204.

    Google Scholar 

  • Zheng, Y., Teng, T. L., and Aki, K. (1989), Surface-wave Mapping of the Crust and Upper Mantle in the Arctic Region, Bull. Seismol. Soc. Am. 79, 1520–1541.

    Google Scholar 

  • Zhu, T. and Chun, K. Y. (1994a), Understanding Finite frequency Wave Phenomena: Phase-ray Formulation and Inhomogeneity Scattering, Geophys. J. Int. 119, 78–90.

    Google Scholar 

  • Zhu, T. and Chun, K. Y. (1994b), Complex Rays in Elastic and Anelastic Media, Geophys. J. Int. 119, 269–276.

    Google Scholar 

  • Zibulski, M. and Zeevi, Y. Y. (1993), Oversampling in the Gabor Scheme, IEEE Trans. on Signal Proc. 41, 2679–2687.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Nowack, R.L. (2003). Calculation of Synthetic Seismograms with Gaussian Beams. In: Ben-Zion, Y. (eds) Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8010-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8010-7_4

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7011-4

  • Online ISBN: 978-3-0348-8010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics