Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

There are currently three major competing views on the essential geometrical, mechanical, and mathematical nature of faults. The standard view is that faults are (possibly segmented and heterogeneous) Euclidean zones in a continuum solid. The continuum-Euclidean view is supported by seismic, gravity, and electromagnetic imaging studies; by successful modeling of observed seismic radiation, geodetic data, and changes in seismicity patterns; by detailed field studies of earthquake rupture zones and exhumed faults; and by recent high resolution hypocenter distributions along several faults. The second view focuses on granular aspects of fault structures and deformation fields. The granular view is supported by observations of rock particles in fault zone gouge; by studies of block rotations and the mosaic structure of the lithosphere (which includes the overall geometry of plate tectonics); by concentration of deformation signals along block boundaries; by correlation of seismicity patterns on scales several times larger than those compatible with a continuum framework; and by strongly heterogeneous wave propagation effects on the earth’s surface. The third view is that faults are fractal objects with rough surfaces and branching geometry. The fractal view is supported by some statistical analysis of regional hypocenter locations; by long-range correlation of various measurements in geophysical boreholes; by the fact that observed power-law statistics of earthquakes are compatible with an underlying scale-invariant geometrical structure; by geometrical analysis of fault traces at the earth’s surface; and by measurements of joint and fault surfaces topography.

There are several overlaps between expected phenomenology in continuum-Euclidean, granular, and fractal frameworks of crustal deformation. As examples, highly heterogeneous seismic wavefields can be generated by granular media, by fractal structures, and by ground motion amplification around and scattering from an ensemble of Euclidean fault zones. A hierarchical granular structure may have fractal geometry. Power-law statistics of earthquakes can be generated by slip on one or more heterogeneous planar faults, by a fractal collection of faults, and by deformation of granular material. Each of the three frameworks can produce complex spatio-temporal patterns of earthquakes and faults. At present the existing data cannot distinguish unequivocally between the three different views on the nature of fault zones or determine their scale of relevance. However, in each observational category, the highest resolution results associated with mature large-displacement faults are compatible with the standard continuum-Euclidean framework. This can be explained by a positive feedback mechanism associated with strain weakening rheology and localization, which attracts the long-term evolution of faults toward progressive regularization and Euclidean geometry. A negative feedback mechanism associated with strain hardening during initial deformation phases and around persisting geometrical irregularities and conjugate sets of faults generates new fractures and granularity at different scales. We conclude that long-term deformation in the crust, including many aspects of the observed spatio-temporal complexity of earthquakes and faults, may be explained to first order within the continuum-Euclidean framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G. G. (1995), Self-excited Oscillations of Two Elastic Half Spaces Sliding with Constant Coefficient of Friction, J. Appl. Mech. 62, 867–872.

    Article  Google Scholar 

  • Aki, K. and Lee, W. H. K. (1976), Determination of Three-dimensional Velocity Anomalies under a Seismic Array Using First P Arrival Times from Local Earthquakes. 1. A Homogenous Initial Model, J. Geophys. Res. 81, 4381–4399.

    Article  Google Scholar 

  • Aki, K. and Richards, P. G. Quantitative Seismology: Theory and Methods. (W. H. Freeman, San Francisco, California (1980)).

    Google Scholar 

  • An, L-J. and Sammis, C. G. (1994), Particle Size Distribution of Cataclastic Fault Materials from Southern California, Pure Appl. Geophys. 143, 203–227.

    Google Scholar 

  • An, L-J. and Sammis, C. G. (1996), A Cellular Automaton for the Development of Crustal Shear Zones, Tectonophysics 253, 247–270.

    Article  Google Scholar 

  • Andrews, D. J. (1980), A Stochastic Fault Model 1. Static Case, J. Geophys. Res. 85, 3867–3877.

    Google Scholar 

  • Andrews, D. J. (1981), A Stochastic Fault Model 2. Time-dependent Case, J. Geophys. Res. 86, 10821–10834.

    Google Scholar 

  • Andrews, D. J. (1989), Mechanics of Fault Junctions, J. Geophys. Res. 94, 9389–9397.

    Article  Google Scholar 

  • Andrews, D. J. and Ben-Zion, Y. (1997), Wrinkle-like Slip Pulse on a Fault Between Different Materials, J. Geophys. Res. 102, 553–571.

    Article  Google Scholar 

  • Arboleya, M. L. and Engelder, T. (1995), Concentrated Slip Zones with Subsidiary Shears: Their Development on Three Scales in the Cerro Brass Fault Zone, Appalachian Valley and Ridge, J. Structural Geol. 17, 519–532.

    Article  Google Scholar 

  • Aviles, C. A., Scholz, C. H., and Boatwright, J. (1987), Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault, J. Geophys. Res. 92, 331–344.

    Article  Google Scholar 

  • Aydin, A. and Johnson, A. M. (1978), Development of Faults as Zones of Deformation Bands and as Slip Surfaces in Sandstone, Pure Appl. Geophys. 116, 931–942.

    Google Scholar 

  • Aydin, A. and Johnson, A. M. (1983), Analysis of Faulting in Porous Sandstones, J. Structural Geol. 5, 1931.

    Article  Google Scholar 

  • Beeler, N. M., Lockner, D. L., and Hickman, S. H. (2001), A Simple Stick-slip and Creep-slip Model for Repeating Earthquakes and its Implication for Micro-earthquakes at Parkfield, Bull. Seismol. Soc. Am., 91, 1797–1804.

    Article  Google Scholar 

  • Ben-Zion, Y. (1996), Stress, Slip and Earthquakes in Models of Complex Single fault Systems Incorporating Brittle and Creep Deformations, J. Geophys. Res. 101, 5677–5706.

    Article  Google Scholar 

  • Ben-Zion, Y. (1998), Properties of Seismic Fault Zone Waves and their Utility for Imaging Low Velocity Structures, J. Geophys. Res. 103, 12567–12585.

    Article  Google Scholar 

  • Ben-Zion, Y. (2001), Recent Results on Dynamic Rupture in Earthquake Fault Models, J. Mech. Phys. Solids 49, 2209–2244.

    Article  Google Scholar 

  • Ben-Zion, Y. and Andrews, D. J. (1998), Properties and Implications of Dynamic Rupture Along a Material Interface, Bull. Seismol., Soc. Am. 88, 1085–1094.

    Google Scholar 

  • Ben-Zion, Y., Dahmen, K., Lyakhovsky, V., Ertas, D., and Agnon, A. (1999), Self-driven Mode Switching of Earthquake Activity on a Fault System, Earth Planet. Sci. Lett. 172, 11–21.

    Google Scholar 

  • Ben-Zion, Y., Katz, S., and Leary, P. (1992), Joint Inversion of Fault Zone Head Waves and Direct P Arrivals for Crustal Structure near Major Faults, J. Geophys. Res. 97, 1943–1951.

    Article  Google Scholar 

  • Ben-Zion, Y. and Malin, P. (1991), San Andreas Fault Zone Head Waves near Parkfield, California, Science 251, 1592–1594.

    Article  Google Scholar 

  • Ben-Zion, Y., Okaya, D., Peng, Z., Michael, A. J., Seeber, L., Armbruster, J. G., OZER, N., BARIS, S., and AKTAR, M. (2000), High Resolution Imaging of the Geometry and Seismic Properties of the Karadere-Duzce Branch of the North Anatolian Fault at Depth, EOS Trans. Amer. Geophys. Union 81, F1172.

    Google Scholar 

  • Ben-Zion, Y. and Rice, J. R. (1993), Earthquake Failure Sequences along a Cellular Fault Zone in a Three-dimensional Elastic Solid Containing Asperity and Nonasperity Regions, J. Geophys. Res. 98, 14109–14131.

    Google Scholar 

  • Ben-Zion, Y. and Rice, J. R. (1995), Slip Patterns and Earthquake Populations along Different Classes of Faults in Elastic Solids, J. Geophys. Res. 100, 12959–12983.

    Article  Google Scholar 

  • Biegel, R. L., Sammis, C. G., and Dieterich, J. H. (1989), The Frictional Properties of a Simulated Gouge Having a Fractal Particle Distribution, J. Structural Geol. 11, 827–846.

    Article  Google Scholar 

  • Bour, O. and Davy, P. (1999), Clustering and Size Distributions of Fault Patterns: Theory and Measurements, Geophys. Res. Lett. 26, 2001–2004.

    Google Scholar 

  • Brown, S. R. (1995), Simple Mathematical Models of Rough Fracture, J. Geophys. Res. 100, 5941–5952.

    Google Scholar 

  • Bruhn, R. L., Parry, W. T., Yonkee, W. A., and Thompson, T. (1994), Fracturing and Hydrothermal Alteration in Normal Fault Zones, Pure Appl. Geophys. 142, 609–644.

    Google Scholar 

  • Brune, J. N., Brown, S., and Johnson, P. A. (1993), Rupture Mechanism and Interface Separation in Foam Rubber Model of Earthquakes.- A Possible Solution to the Heat Flow Paradox and the Paradox of Large Overthrusts, Tectonophysics 218, 59–67.

    Article  Google Scholar 

  • Burgmann, R., Rosen, P. A., and Fielding, E. J. (2000), Synthetic Aperature Radar Interferometry to Measure Earth’s Surface Topography and its Deformation, Ann. Rev. Earth and Plan. Sci. 28,169–209.

    Google Scholar 

  • Chester, F. M. and Logan, J. M. (1986), Implications for Mechanical Properties of Brittle Faults from Observations of the Punchbowl Fault Zone, California, Pure Appl. Geophys. 124, 79–106.

    Article  Google Scholar 

  • Chester, F. M. and Logan, J. M. (1987), Composite Planar Fabric of Gouge from the Punchbowl Fault, California, J. Structural Geol. 9, 621–634.

    Article  Google Scholar 

  • Chester, F. M., Evans, J. P., and Biegel, R. L. (1993), Internal Structure and Weakening Mechanisms of the San Andreas Fault, J. Geophys. Res. 98, 771–786.

    Article  Google Scholar 

  • Chester, F. M. and Chester, J. S. (1998), Ultracataclasite Structure and Friction Processes of the Punchbowl Fault, San Andreas System, California, Tectonophysics 295 199–221.

    Article  Google Scholar 

  • Chester, F. M. and Kirschner, D. L. (2000), Geochemical Investigation of Fluid Involvement in Exhumed Faults of the San Andreas System, National Earthquake Hazards Reduction Program, Annual Project Summary, 41, U.S. Geological Survey.

    Google Scholar 

  • Dahmen, K., Ertas, D., and Ben-Zion, Y. (1998), Gutenberg Richter and Characteristic Earthquake Behavior in Simple Mean-Field Models of Heterogeneous Faults, Phys. Rev. E 58, 1494–1501.

    Article  Google Scholar 

  • Dieterich, J. H., A Model for the Nucleation of Earthquake Slip. In Earthquake Source Mechanics. AGU Geophys. Mono. 37. (Washington, D.C., American Geophysical Union 1986) pp. 37–49.

    Google Scholar 

  • Dieterich, J. (1994), A Constitutive Law for Rate of Earthquake Production and its Application to Earthquake Clustering, J. Geophys. Res. 99, 2601–2618.

    Article  Google Scholar 

  • Dodge, D., Beroza, G. C., and Ellsworth, W. L. (1995), Evolution of the 1992 Landers, California, Foreshock Sequence and its Implications for Earthquake Nucleation, J. Geophys. Res. 100, 9865–9880.

    Article  Google Scholar 

  • Eberhart-Phillips, D. and Michael, A. J. (1993), Three-dimensional Velocity, Structure, Seismicity, and Fault Structure in the Parkfield Region, Central California, J. Geophys. Res. 98, 15737–15757.

    Article  Google Scholar 

  • Eberhart-Phillips, D. and Michael, A. J. (1998), Seismotectonics of the Loma Prieta, California, Region Determined from Three-dimensional VP, VP/V„ and Seismicity, J. Geophys. Res. 103, 21099–21120.

    Google Scholar 

  • Eberhart-Phillips, D., Stanley, W. D., Rodriguez, B. D., and Lutter, W. J. (1995), Surface Seismic and Electrical Methods to Detect Fluids Related to Faulting, J. Geophys. Res. 97, 12919–12936.

    Google Scholar 

  • Evans, J. P. and Chester, F. M. (1995), Fluid-rock Interaction in Faults of the San Andreas System: Inferences from San Gabriel Fault Rock Geochemistry and Microstructures, J. Geophys. Res. 100, 13007–13020.

    Article  Google Scholar 

  • Evans, J. P., Shipton, Z. K., Pachell, M. A., Lim, S. J., and Robeson, K. (2000), The Structure and Composition of Exhumed Faults, and their Implication for Seismic Processes, In Proc. of the 3rd Confer. on Tecto. problems of the San Andreas system, Stanford University.

    Google Scholar 

  • Feng, R. and Mcevilly, T. V. (1983), Interpretation of Seismic Reflection Profiling Data for the Structure of the San Andreas Fault Zone, Bull. Seismol. Soc. Amer. 73, 1701–1720.

    Google Scholar 

  • Fisher, D. S., Dahmen, K., Ramanathan, S., and Ben-Zion, Y. (1997), Statistics of Earthquakes in Simple Models of Heterogeneous Faults, Phys. Rev. Lett. 78, 4885–4888.

    Article  Google Scholar 

  • Freund, R. (1974), Kinematics of Transform and Transcurrent Faults, Tectonophysics 21, 93–134.

    Article  Google Scholar 

  • Fuis, G. S. and Mooney, W. D. (1990), Lithospheric Structure and Tectonics from Seismic-Refraction and other data. In The San Andreas Fault System, California (ed. R. E. Wallace) U.S. Geol. Surv. Prof. Pap. 1515, 207–238.

    Google Scholar 

  • Fukao, Y., Hori, S., and Ukawa, M. (1983), A Seismological Constraint on the Depth of Basalt-Eclogite Transition in a Subducting Oceanic Crust, Nature 303, 413–415.

    Article  Google Scholar 

  • Fung, Y. C., A First Course in Continuum Mechanics (2nd edition) (Prentice-Hall, Inc., New Jersey. 1977).

    Google Scholar 

  • Gallagher, J. J., Jr. (1981), Tectonics of China: Continental Style Cataclastic Flow, in Mechanical Behavior of Crustal Rocks; The Handin Volume, Geophysical Monograph 24, pp. 259–273, American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Got, J.-L., FrÉchet, J., and Klein, F. W. (1994), Deep Fault Plane Geometry Inferred from Multiplet Relative Relocation Beneath the South Flank of Kilauea, J. Geophys. Res. 99, 15375–15386.

    Article  Google Scholar 

  • Harris, R. A (1998), Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard, J. Geophys. Res. 103, 24347–24358.

    Article  Google Scholar 

  • Harris, R. A. and Day, S. M. (1993), Dynamics of Fault Interactions: Parallel Strike-slip Faults, J. Geophys. Res. 98, 4461–4472.

    Article  Google Scholar 

  • Harris, R. A. and Simpson, R. W. (1996), In the Shadow of 1857 the Effect of the Great Ft. Tejon Earthquake on Subsequent Earthquakes in Southern California, Geophys. Res. Lett. 23, 229–232.

    Article  Google Scholar 

  • Heaton, T. H. (1990), Evidence for and Implications of Self-healing Pulses of Slip in Earthquake Rupture,Phys. Earth and Plan. Interiors 64, 1–20.

    Google Scholar 

  • Herrero, A. and Bernard, P. (1994), A Kinematic Self-similar Rupture Process for Earthquakes, Bull. Seismol. Soc. Am. 84, 1216–1228.

    Google Scholar 

  • Hirata, T. (1989), Fractal Dimension of Fault Systems in Japan: Fractal Structure in Rock Fracture Geometry at Various Scales, Pure Appl. Geophys. 131, 157–170.

    Google Scholar 

  • Hough, S. E., Ben-Zion, Y., and Leary, P. (1994), Fault-zone Waves Observed at the Southern Joshua Tree Earthquake Rupture Zone, Bull. Seismol. Soc. Am., 84, 761–767.

    Google Scholar 

  • Ito, A. (1985), High Resolution Relative Hypocenters of Similar Earthquakes by Cross-spectral Analysis Method, J. Phys. Earth 33, 279–294.

    Article  Google Scholar 

  • Jaeger, M., Nagel, S. R., and Behringer, R. P. (1996), Granular Solids, Liquids, and Gases, Rev. of Mod. Phys. 68, 1259–1273.

    Article  Google Scholar 

  • Kagan, Y. Y. (1981a), Spatial Distribution of Earthquakes: The Tree-point Moment Function, Geophys. J. R. Astron. Soc. 67, 697–717.

    Article  Google Scholar 

  • Kagan, Y. Y. (198lb), Spatial Distribution of Earthquakes: The Four point Moment Function, Geophys. J. R. Astron. Soc. 67, 719–733.

    Article  Google Scholar 

  • Kagan, Y. Y. (1991), Fractal Dimension of Brittle Fracture, J. Nonlinear Sci. 1, 1–16.

    Article  Google Scholar 

  • Kagan, Y. Y. (1992), Seismicity: Turbulence of Solids, Nonlinear Sci. Today 2, 1–13.

    Google Scholar 

  • Kagan, Y. Y. (1994), Observational Evidence for Earthquakes as a Nonlinear Dynamic Process, Physica D 77, 160–192.

    Article  Google Scholar 

  • Kagan, Y. Y. and Knopoff, L. (1980), Spatial Distribution of Earthquakes: The Two-point Correlation Function, Geophys. J. R. Astron. Soc. 62, 303–320.

    Article  Google Scholar 

  • Keilis-Borok, V. I. and Kossosoxov, V. G. (1990), Premonitory Activation of Earthquake Flow: Algorithm M8, Phys. Earth Planet. Inter. 61, 73–83.

    Google Scholar 

  • King, G. C. P. (1983), The Accommodation of Large Strains in the Upper Lithosphere of the Earth and Other Solids by Self-similar Fault Systems: The Geometrical Origin of b-value, Pure Appl. Geophys., 121, 761–814.

    Google Scholar 

  • King, G. C. P. and Cocco, M. (2001), Fault Interaction by Elastic Stress Changes: New Clues from Earthquake Sequences, Adv. in Geophys. 44, 1–38.

    Article  Google Scholar 

  • Kuwahara, Y. and Iro, H. (2000), Deep Structure of the Nojima Fault by Trapped Wave Analysis, USGS, Open-file Report 00–129, 283–289.

    Google Scholar 

  • Leary, P. C. (1991), Deep bore hole log evidence for fractal distribution of fractures in crystalline rock, Geophys. J. Int., 107, 615–627.

    Google Scholar 

  • Leary, P., Li, Y. G., and Aki, K. (1987), Observations and Modeling of Fault Zone Fracture Anisotropy, I, P, SV, SH Travel Times, Geophys. J. R. Astron. Soc. 91, 461–484.

    Article  Google Scholar 

  • Lees, J. and Malin, P. E. (1990), Tomographic Images of P-wave Velocity Variation at Parkfield, California, J. Geophys. Res. 95, 21793–21804.

    Article  Google Scholar 

  • Li, Y. G., Aki, K., Adams, D., Hasemi, A., and Lee, W. H. K. (1994), Seismic Guided Waves Trapped in the Fault Zone of the Landers, California, Earthquake of 1992, J. Geophys. Res. 99, 11705–11722.

    Article  Google Scholar 

  • Li, Y. G., Aki, K., Vidale, J. E., and Alvarez, M. G. (1998), A Delineation of the Nojima Fault Ruptured in the M7.2 Kobe, Japan, Earthquake of 1995 Using Fault-zone Trapped Waves, J. Geophys. Res. 103, 7247–7263.

    Article  Google Scholar 

  • Li, Y. G., Ellsworth, W. L., Thurber, C. H., Malin, P. E., and Aki, K. (1997), Fault-zone Guided Waves from Explosions in the San Andreas Fault at Parkfield and Cienega Valley, Bull. Seismol. Soc. Am. 87, 210–221.

    Google Scholar 

  • Li, Y. G., Leary, P., Ax!, K., and Malin, P. (1990), Seismic Trapped Modes in the Oroville and San Andreas Fault Zones, Science 249, 763–766.

    Article  Google Scholar 

  • Lockner, D. (1998), A Generalized Law for Brittle Deformation of Westerly Granite, J. Geophys. Res. 103, 5107–5123.

    Article  Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., and Sidrin, A., Observations of Quasi-static Fault Growth from Acoustic Emissions. In Fault Mechanics and Transport Properties of Rocks (eds. B. Evans and T.-f. Wong) pp. 3–31 (Academic, San Diego, Calif. 1992).

    Chapter  Google Scholar 

  • Luyendyk, B. P. (1991), A Model of Neogene Crustal Rotations, Transtension, and Transpression in Southern California, Geol. Soc. Am. Bull. 103, 1528–1536.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (1997), Distributed Damage, Faulting, and Friction, J. Geophys. Res. 102, 27635–27649.

    Article  Google Scholar 

  • Lyakhovsky, V., Ben-Zion, Y., and Agnon, A. (2001), Earthquake Cycle Faults, and Seismicity Patterns in Rheologically Layered Lithosphere, J. Geophys. Res. 106, 4103–4120.

    Google Scholar 

  • Mackie, R. L., Livelybrooks, D. W., Madden, T. R., and Larsen, J. C. (1997), A Magnetotelluric Investigation of the San Andreas Fault at Carrizo Plain California, Geophys. Res. Lett. 24, 1847–1850.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1983), The Fractal Geometry of Nature (3rd edition) (W. H. Freeman and Company, New York).

    Google Scholar 

  • Marco, S., Stein, M., Agnon, A., and Ron, H. (1996), Long-term Earthquake Clustering: A 50,000 Year Paleoseismic Record in the Dead Sea Graben, J. Geophys. Res. 101, 6179–6192.

    Article  Google Scholar 

  • Marone, C. and Kilgore, B. (1993), Scaling of the Critical Slip Distance for Seismic Faulting with Shear Strain in Fault Zones, Nature, 362, 618–21.

    Article  Google Scholar 

  • Marone, C. and Scholz, C.H. (1989), Particle-size Distribution and Microstructures within Simulated Fault Gouge, J. Struct. Geology 11, 799–814.

    Article  Google Scholar 

  • Martel, S. J. (1990), Formation of Compound Strike-slip Fault Zones, Mount Abbot Quadrangle, California, J. Struct. Geol. 12, 869–881.

    Article  Google Scholar 

  • Martel, S. J., Pollard, D. D., and Segall, P. (1988), Development of Simple Fault Zones in Granitic Rock, Mount Abbot Quadrangle, Sierra Nevada, California, Geol. Soc. of Am. Bull. 100, 1451–1465.

    Article  Google Scholar 

  • Mcguire, J.J., Zhao, L., and Jordan, T. H. (2000), Predominance of Unilateral Rupture for a Global Distribution of Large Earthquakes, EOS Trans. Am. Geophs. Union 81, F1228.

    Google Scholar 

  • Michael, A. J. and Ben-Zion, Y. (2002), Determination of Fault Zone Structure from Seismic Guided Waves by Genetic Inversion Algorithm and 2-D Analytical Solution: Application to the Parkfield Segment of the San Andreas Fault, ms. in preparation.

    Google Scholar 

  • Michael, A. J. and Eberhart-Phillips, D. (1991), Relations Among Fault Behavior, Subsurface Geology, and Three-dimensional Velocity Models, Science 253, 651–654.

    Article  Google Scholar 

  • Michelini, A. and McEvilly, T. V. (1991), Seismological Studies at Parkfield, I, Simultaneous Inversion for Velocity Structure and Hypocenters Using Cubic B-spline Parameterization, Bull. Seismol. Soc. Am. 81, 524–552.

    Google Scholar 

  • Mooney, W. D. and Brocher, T. M. (1987), Coincident Seismic Reflection! Refraction Studies of Continental Lithosphere: A Global Review, Rev. Geophys. 25, 723–742.

    Article  Google Scholar 

  • Mooney, W. D. (1989), Seismic Methods for Determining Earthquake Source Parameters and Lithospheric Structure, Mem. Geol. Soc. Am. 172, 11–34.

    Google Scholar 

  • Neal, L. A., Chester, J. S., Chester, F. M., and Wintsch, R. P. (2000), Internal Structure of the Kern Canyon Fault, California: A Deeply Exhumed Strike-slip Fault, EOS Trans. Am. Geophys. Union 81, F1145.

    Google Scholar 

  • Nadeau, R., AN-roux, M., Johnson, P. A., Foxall, W., and Mcevilly, T. V. (1994), Seismological Studies at Parkfield III: Microearthquake Clusters in the Study of Fault-zone Dynamics, Bull. Seismol. Soc. Am. 84, 1247–263.

    Google Scholar 

  • Nadeau, R. M. and Johnson, L. R. (1998), Seismological Studies at Parkfield VI: Moment Release Rates and Estimates of Source Parameters for Small Repeating Earthquakes, Bull. Seismol. Soc. Am. 88, 790–814.

    Google Scholar 

  • Nadeau, R. M. and Mcevilly, T. V. (1997), Seismological Studies at Parkfield V: Characteristic Microearthquake Sequences as Fault-zone Drilling Targets, Bull. Seismol. Soc. Am. 87, 1463–1472.

    Google Scholar 

  • Nalbant, S., Hubert, A., and King, G. C. P. (1998), Stress Coupling in North West Turkey and the North Aegean, J. Geophys. Res. 103, B10, 24469–24486.

    Article  Google Scholar 

  • Nishigami, K., Ando, M., and Tadokoro, K. (2001), Seismic Observations in the DPRI 1800 m Borehole Drilled into the Nojima Fault Zone, Southwest Japan, Island Arc, 10, 288–295.

    Article  Google Scholar 

  • Nur, A., Ron, H., and Scorn, O. (1989), Kinematics and Mechanics of Tectonic Block Rotations, Geophys. Mono. 49, 31–46.

    Google Scholar 

  • Okubo, P. G. and Am, K. (1987), Fractal Geometry in the San Andreas Fault System, J. Geophys. Res. 92, 345–355.

    Article  Google Scholar 

  • Ouillon, G., Castaing, C., and Sornette, D. (1996), Hierarchical Geometry of Faulting, J. Geophys. Res. 101, 5477–5487.

    Article  Google Scholar 

  • Peng, Z., Ben-Zion, Y., and Michael, A. J. (2000), Inversion of Seismic Fault Zone Waves in the Rupture Zone of the 1992 Landers Earthquake for High Resolution Velocity Structure at Depth, EOS Trans. Am. Geophys. Union 81, F1146.

    Google Scholar 

  • Power, W. L. and Tunis, T. E. (1991), Euclidean and Fractal Models for the Description of Rock Surface Roughness, J. Geophys. Res. 96, 415–424.

    Article  Google Scholar 

  • Power, W. L., Tunis, T. E., and Weeks, J. D. (1988), Roughness and Wear During Brittle Faulting, J. Geophys. Res. 93, 15268–15278.

    Article  Google Scholar 

  • Prasher, C., Crushing and Grinding Process Handbook (John Wiley and Sons Ltd., New York. 1987). RICE, J. R. (1993), Spatio-temporal Complicity of slip on a fault, J. Geophys. Res., 98, 9885–9907.

    Google Scholar 

  • Richards-Dinger, K. B. and Shearer, P. M. (2000), Earthquake Locations in Southern California Obtained Using Source-specific Station Terms, J. Geophys. Res. 105, 10939–10960.

    Article  Google Scholar 

  • Robertson, M. C., Sammis, C. G., Sahimi, M., and Martin, A. (1995), The 3-D spatial Distribution of Earthquakes in Southern California with a Percolation Theory Interpretation, J. Geophys. Res. 100, 609–620.

    Google Scholar 

  • Rockwell, T. K., Lindvall, S., Herzberg, M., Murbach, D., Dawson, T., and Berger, G. (2000), Paleoseismology of the Johnson Valley, Kickcapoo and Homestead Valley Faults of the Eastern California Shear Zone, Bull. Seismol. Soc. Am. 90, 1200–1236.

    Article  Google Scholar 

  • Rubin, A. M. and Gillard, D. (2000), Aftershock Asymmetry’ Rupture Directivity Among Central San Andreas Fault Microearthquakes, J. Geophys. Res. 105, 19095–19109.

    Article  Google Scholar 

  • Rubin, A. M., Gillard, D., and Got, J.-L. (1999), Streaks of Microearthquakes along Creeping Faults, Nature 400, 635–641.

    Article  Google Scholar 

  • Sammis, C. G., Nadeau, R. M., and Johnson, L. R. (1999), How Strong is an asperity?, J. Geophys. Res. 104, 10609–10619.

    Article  Google Scholar 

  • Sammis, C. G., An, L. and Ershaghi, I. (1992), Determining the 3-D Fracture Structure of the Geysers Geothermal Reservoir, Proc. 17`h Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 29–31.

    Google Scholar 

  • Sammis, C. G. and Biegel, R. (1989), Fractals, Fault-gouge, and Friction, Pure Appl. Geophys. 131, 255–271

    Article  Google Scholar 

  • Sammis, C. G. and Steacy, S. J. (1994), The Micromechanics of Friction in a Granular Layer, Pure Appl. Geophys. 142, 777–794.

    Google Scholar 

  • Sammis, C. G., King, G. C. P. and Biegel, R. (1987), The Kinematics of Gouge Deformation, Pure Appl. Geophys. 125, 777–812.

    Google Scholar 

  • Sammis, C. G. and Rice, J. R. (2001), Repeating Earthquakes as Low-stress-drop Events at a Border between Locked and Creeping Fault Patches, Bull. Seismol. Soc. Am., 91, 532–537.

    Article  Google Scholar 

  • Scholz, C. H. (1991), Earthquakes and faulting: Self-organized critical phenomena with a characteristic dimension. In Spontaneous Formation of Space-time Structures and Criticality (eds. T. Riste and D. Sherrington) (Kluwer Acad., Norwell, Mass.) pp. 41–56.

    Google Scholar 

  • Schulz, S. E. and Evans, J. P. (2000), Mesoscopic Structure of the Punchbowl Fault, Southern California and the Geologic and Geophysical Structure of Active Strike-slip Faults, J. of Struct. Geol. 22, 913–930.

    Article  Google Scholar 

  • Segall, P. and Davis, J. L. (1997), GPS Applications for Geodynamics and Earthquake Studies, Ann. Re. Earth and Planet. Sci. 25, 301–336.

    Article  Google Scholar 

  • Segall, P. and Pollard, D. D. (1983), Nucleation and Growth of Strike-slip Faults in Granite, J. Geophys. Res. 88, 555–568.

    Article  Google Scholar 

  • Shapiro, N. M., Campillo, M., Singh, S. K., and Pacheco, J. (1998), Seismic Channel Waves in the Accretionary Prism of the Middle America Trench, Geophys. Res. Lett. 25, 101–104.

    Google Scholar 

  • Shearer, P. (1997), Improving Local Earthquake Locations Using the LI Norm and Waveform Cross Correlation: Application to the Whittier Narrows, California, Aftershock Sequence, J. Geophys. Res. 102, 8269–8283.

    Article  Google Scholar 

  • Sibson, R. H. (1986), Brecciation Processes in Fault Zones: Inferences from Earthquake Rupturing, Pure Appl. Geophys. 124, 159–176.

    Google Scholar 

  • Sibson, R. H. (1999), Thickness of the Seismogenic Slip Zone: Constraints from Field Geology, EOS Trans. Amer. Geophys. Union 80, F727.

    Google Scholar 

  • Simpson, R. W. and Reasenberg, P. A. (1994), Earthquake-induced Static Stress Changes on Central California Faults. In the Loma Prieta, California earthquake of October 17, 1989-tectonic processes and models, (R. W. Simpson, ed.) U. S. Geological Survey Prof. Paper 1550-F.

    Google Scholar 

  • Smith, J. T. and Booker, J. R. (1991), Rapid Inversion of Two-and Three-dimensional Magnetotelluric Data, J. Geophys. Res. 96, 3905–3922.

    Article  Google Scholar 

  • Steacy, S. J. and Sammis, C. G. (1991), An Automaton for Fractal Patterns of Fragmentation, Nature 353, 250–252.

    Article  Google Scholar 

  • Stein, R. S., Barka, A. A., and Dieterich, J. H. (1997), Progressive Failure on the North Anatolian Fault since 1939 by Earthquake Stress Triggering, Geophys. J. Int. 128, 594–604.

    Google Scholar 

  • Stein, R. S., King, G., and Lin, J. (1994), Stress Triggering of the 1994 M-6.7 Northridge, California, Earthquake by its Predecessors, Science 265, 1432–1435.

    Article  Google Scholar 

  • Stierman, D. J. (1984), Geophysical and Geological Evidence for Fracturing, Water Circulation, and Chemical Alteration in Granitic Rocks Adjacent to Major Strike-slip Faults, J. Geophys. Res. 89, 5849–4857.

    Google Scholar 

  • Stirling, M. W., Wesnousky, S. G., and Shimazaki, K. (1996), Fault Trace Complexity, Cumulative Slip, and the Shape of the Magnitude frequency Distribution for Strike-slip Faults: a Global Survey, Geophys. J. Int. 124, 833–868.

    Google Scholar 

  • Tchalenko, J. S. (1970), Similarities between Shear Zones of Different Magnitudes, Bull. Geol. Soc. Am. 81, 1625–1640.

    Article  Google Scholar 

  • Utsu T., Ogata, Y., and Matsu’ura, R. S. (1995), The Centenary of the Omori Formula for a Decay Law of Aftershock Activity, J. Phys. Earth 43, 1–33.

    Article  Google Scholar 

  • Unsworth, M., Egbert, G., and Booker, J. (1999), High-resolution Electromagnetic Imaging of the San Andreas Fault in Central California, J. Geophys. Res. 104, 1131–1150.

    Article  Google Scholar 

  • Wald, D. J. (1992), Rupture Characteristics of California Earthquakes, Ph.D. Thesis, Caltech.

    Google Scholar 

  • Waldhauser, F., Ellsworth, W. L., and Cole, A. (1999), Slip-parallel Seismic Lineations Along the Northern Hayward Fault, California, Geophys. Res. Lett. 26, 3525–3528.

    Article  Google Scholar 

  • Wang, C. Y., Rui, F., Zhengsheng, Y., and Xingjue, S. (1986), Gravity Anomaly and Density Structure of the San Andreas Fault Zone, Pure Appl. Geophys. 124, 127–140.

    Article  Google Scholar 

  • Weertman, J. (1980), Unstable Slippage across a Fault that Separates Elastic Media of Different Elastic Constants, J. Geophys. Res. 85, 1455–1461.

    Article  Google Scholar 

  • Wesnousky, S. (1994), The Gutenberg-Richter or Characteristic Earthquake Distribution, which is it?, Bull. Seismol. Soc. Am. 84, 1940–1959.

    Google Scholar 

  • Wesnousky, S. (1988), Seismological and Structural Evolution of Strike-slip Faults, Nature 335, 340–342.

    Google Scholar 

  • Willemse, E. J. M., Peacock, D. C. P., and Aydin, A. (1997), Nucleation and Growth of Strike-slip Faults in Limestones from Somerset, U. K., J. Struct. Geol. 19, 1461–1477.

    Article  Google Scholar 

  • Zeng, Y., Anderson, J. G., and Yu, G. (1994), A Composite Source Model for Computing Realistic Synthetic Strong Ground Motion, Geophys. Res. Lett. 21, 725–728.

    Google Scholar 

  • Zhu, L. and Helmberger, D. V. (1996), Advancement in Source Estimation Techniques Using Broadband Regional Seismograms, Bull. Seismol. Soc. Am. 86, 1634–1641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Ben-zion, Y., Sammis, C.G. (2003). Characterization of Fault Zones. In: Ben-Zion, Y. (eds) Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8010-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8010-7_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7011-4

  • Online ISBN: 978-3-0348-8010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics