Skip to main content

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

A simple and powerful method for simulating ground motions is to combine parametric or functional descriptions of the ground motion’s amplitude spectrum with a random phase spectrum modified such that the motion is distributed over a duration related to the earthquake magnitude and to the distance from the source. This method of simulating ground motions often goes by the name “the stochastic method.” It is particularly useful for simulating the higher-frequency ground motions of most interest to engineers (generally, f > 0.1 Hz), and it is widely used to predict ground motions for regions of the world in which recordings of motion from potentially damaging earthquakes are not available. This simple method has been successful in matching a variety of ground-motion measures for earthquakes with seismic moments spanning more than 12 orders of magnitude and in diverse tectonic environments. One of the essential characteristics of the method is that it distills what is known about the various factors affecting ground motions (source, path, and site) into simple functional forms. This provides a means by which the results of the rigorous studies reported in other papers in this volume can be incorporated into practical predictions of ground motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamson, N. A. and Silva, W. J. (1997), Empirical Response Spectral Attenuation Relations for Shallow Crustal Earthquakes, Seism. Res. Lett. 68, 94–127.

    Google Scholar 

  • Ak!, K. (1966), Generation and Propagation of G Waves from the Niigata Earthquake of June 16, 1964. Part 2. Estimation of Earthquake Moment, Released Energy, and Stress-strain Drop from the G-Wave Spectrum, Bull. Earthq. Res. Inst. 44, 73–88.

    Google Scholar 

  • Ak!, K. (1967), Scaling Law of Seismic Spectrum, J. Geophys. Res. 72, 1217–1231.

    Article  Google Scholar 

  • Ax!, K. (1980), Attenuation of Shear-waves in the Lithosphere for Frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Inter. 21, 50–60.

    Google Scholar 

  • Akinci, A., Malagnini L., HERrMANN R. B., Pino N. A., SCOGNAMIGLIO L., and EYIDOGAN, H. (2001), High frequency ground motion in the Erzincan region, Turkey: Inferences from small earthquakes, Bull. Seism. Soc. Am. 91, 1446–1455

    Article  Google Scholar 

  • Anderson, J. G. and Hough, S. E. (1984), A Model for the Shape of the Fourier Amplitude Spectrum of Acceleration at High Frequencies, Bull. Seismol. Soc. Am. 74, 1969–1993.

    Google Scholar 

  • Anderson, J. G. and Lei, Y. (1994), Nonparametric Description of Peak Acceleration as a Function of Magnitude, Distance, and Site in Guerero, Mexico, Bull. Seismol. Soc. Am. 84, 1003–1017.

    Google Scholar 

  • Arias, A. A Measure of Earthquake Intensity. In Seismic Design for Nuclear Power Plants (Robert J. Hansen, ed.) (The M.I.T. Press, Cambridge, Mass. 1970) pp. 438–483.

    Google Scholar 

  • Asce (2000), Seismic Analysis of Safety-Related Nuclear Structures, American Society of Civil Engineers, ASCE-98.

    Google Scholar 

  • Atkinson, G. M. (1984), Attenuation of Strong Ground Motion in Canada from a Random Vibrations Approach, Bull. Seismol. Soc. Am. 74, 2629–2653.

    Google Scholar 

  • Atkinson, G. M. (1989), Implications of Eastern Ground-Motion Characteristics for Seismic Hazard Assessment in Eastern North America. In Earthquake Hazards and the Design of Constructed Facilities in the Eastern United States (K. H. Jacob and C. J. Turkstra, eds.) Annals of the New York Academy of Sciences 558, 128–135.

    Google Scholar 

  • Atkinson, G. M. (1990), A Comparison of Eastern North American Ground Motion Observations with Theoretical Predictions, Seism. Res. Lett. 61, 171–180.

    Google Scholar 

  • Atkinson, G. M. (1993a), Notes on Ground Motion Parameters for Eastern North America: Duration and HIV Ratio, Bull. Seismol. Soc. Am. 83, 587–596.

    Google Scholar 

  • Atkinson, G. M. (1993b), Earthquake Source Spectra in Eastern North America, Bull. Seismol. Soc. Am. 83, 1778–1798.

    Google Scholar 

  • Atkinson, G. M. (1995), Attenuation and Source Parameters of Earthquakes in the Cascadia Region, Bull. Seismol. Soc. Am. 85, 1327–1342.

    Google Scholar 

  • Atkinson, G. M. (1996), The High frequency Shape of the Source Spectrum for Earthquakes in Eastern and Western Canada, Bull. Seismol. Soc. Am. 86, 106–112.

    Google Scholar 

  • Atkinson, G. M. (1997), Empirical Ground Motion Relations for Earthquakes in the Cascadia Region, Canadian J. Civil Eng. 24, 64–77.

    Article  Google Scholar 

  • Atkinson, G. M. and Beresnev, I. A. (1998), Compatible Ground-motion Time Histories for New National Seismic Hazard Maps, Canadian J. Civil Eng. 25, 305–318.

    Article  Google Scholar 

  • Atkinson, G. M. and Beresnev, I. A. (2002), Ground motions at Memphis and St. Louis from M 7.5–8.0 earthquakes in the New Madrid seismic zone, Bull Seism. Soc. Am. 92, 1015–1024.

    Article  Google Scholar 

  • Atkinson, G. M. and Boore, D. M. (1987), On the mN, M Relation for Eastern North American Earthquakes, Seism. Res. Lett. 58, 119–124.

    Google Scholar 

  • Atkinson, G. M. and Boore, D. M. (1990), Recent Trends in Ground Motion and Spectral Response Relations for North America, Earthquake Spectra 6, 15–35.

    Article  Google Scholar 

  • Atkinson, G. M. and Boore, D. M. (1995), Ground Motion Relations for Eastern North America, Bull. Seismol. Soc. Am. 85, 17–30.

    Google Scholar 

  • Atkinson, G. M. and Boore, D. M. (1997a), Some Comparisons between Recent Ground-motion Relations, Seism. Res. Lett. 68, 24–40.

    Google Scholar 

  • Atkinson, G. M. and Boore, D. M. (1997b), Stochastic Point-source Modeling of Ground Motions in the Cascadia Region, Seism. Res. Lett. 68, 74–85.

    Google Scholar 

  • Atkinson, G. M. and Boore, D. M. (1998), Evaluation of Models for Earthquake Source Spectra in Eastern North America, Bull. Seismol. Soc. Am. 88, 917–934.

    Google Scholar 

  • Atkinson, G. M. and Cassidy J. F. (2000), Integrated use of seismograph and strong-motion data to determine soil amplification: Response of the Fraser River Delta to the Duvall and Geoprgia Strait earthquakes, Bull. Seism. Soc. Am. 90, 1028–1040.

    Article  Google Scholar 

  • Atkinson, G., and Greig, G. (1994), On the relationship between linear and nonlinear response parameters. Proc. Fifth U.S. National Conference on Earthquake Engineering, Chicago, July 10–14,1994,4,561–570.

    Google Scholar 

  • Atkinson, G. M. and Hanks, T. C. (1995), A High frequency Magnitude Scale, Bull. Seismol. Soc. Am. 85, 825–833.

    Google Scholar 

  • Atkinson, G. M. and Mereu, R. F. (1992), The Shape of Ground Motion Attenuation Curves in Southeastern Canada, Bull. Seismol. Soc. Am. 82, 2014–2031.

    Google Scholar 

  • Atkinson, G. M. and Silva, W. (1997), An Empirical Study of Earthquake Source Spectra for California Earthquakes, Bull. Seismol. Soc. Am. 87, 97–113.

    Google Scholar 

  • Atkinson, G. M. and Silva, W. (2000), Stochastic Modeling of California Ground Motions, Bull. Seismol. Soc. Am. 90, 255–274.

    Article  Google Scholar 

  • Atkinson, G. M. and Somerville, P. G. (1994), Calibration of Time History Simulation Methods, Bull. Seismol. Soc. Am. 84, 400–414.

    Google Scholar 

  • Aviles, J. and Perez-Rocha, L. E. (1998), Site Effects and Soil-structure Interaction in the Valley of Mexico, Soil Dyn. Earthq. Eng. 17, 29–39.

    Google Scholar 

  • Ben-Zion, Y. and Zhu, L. (2002), Potency-magnitude scaling relations for southern California earthquakes with 1.0 < ML < 7.0, Geophys. J. Int. 148, F1–F5.

    Google Scholar 

  • Berardi, R., Jimenez, M., Zonno, G., and Garcia-Fernandez, M. (1999), Calibration of Stochastic Ground Motion Simulations for the 1997 Umbria-Marche, Central Italy, Earthquake Sequence. Proc. 9th Intl. Conf. On Soil Dynamics and Earthquake Engineering, SDEE 99, Aug. 1999, Bergen, Norway.

    Google Scholar 

  • Beresnev, I.A. (2002). Nonlinearity at California generic soil sites from modeling recent strong-motion data, Bull. Seism. Soc. Am. 92, 863–870

    Article  Google Scholar 

  • Beresnev, I. A. and Atkinson, G. M. (1997), Modeling Finite fault Radiation from the w Spectrum, Bull. Seismol. Soc. Am. 87, 67–84.

    Google Scholar 

  • Beresnev, I. A. and Atkinson, G. M. (1998a), FINSIM-a FORTRAN Program for Simulating Stochastic Acceleration Time Histories from Finite Faults, Seism. Res. Lett. 69, 27–32.

    Google Scholar 

  • Beresnev, I. A. and Atkinson, G. M. (1998b), Stochastic Finite fault Modeling of Ground Motions from the 1994 Northridge, California Earthquake. I. Validation on Rock Sites, Bull. Seismol. Soc. Am. 88, 1392–1401.

    Google Scholar 

  • Beresnev, I. A. and Atkinson, G. M. (1999), Generic Finite fault Model for Ground-motion Prediction in Eastern North America, Bull. Seismol. Soc. Am. 89, 608–625.

    Google Scholar 

  • Beresnev, I. A. and Atkinson, G. M. (2002), Source parameters of earthquakes in eastern and western North America based on finite fault modeling, Bull. Seism. Soc. Am. 92, 695–710.

    Article  Google Scholar 

  • Bernard, P., Herrero, A., and Berge, C. (1996), Modeling Directivity of Heterogeneous Earthquake Ruptures, Bull. Seismol. Soc. Am. 86, 1149–1160.

    Google Scholar 

  • Boatwright, J. and Choy, G. (1992), Acceleration Source Spectra Anticipated for Large Earthquakes in Northeastern North America, Bull. Seismol. Soc. Am. 82, 660–682.

    Google Scholar 

  • Bollinger, G. A., Chapman, M. C., and Sibol, M. S. (1993), A Comparison of Earthquake Damage Areas as a Function of Magnitude across the United States, Bull. Seismol. Soc. Am. 83, 1064–1080.

    Google Scholar 

  • Boore, D. M. (1983), Stochastic Simulation of High frequency Ground Motions Based on Seismological Models of the Radiated Spectra, Bull. Seismol. Soc. Am. 73,1865–1894.

    Google Scholar 

  • Boore, D. M. (1984), Use of Seismoscope Records to Determine ML and Peak Velocities, Bull. Seismol. Soc. Am. 74, 315–324.

    Google Scholar 

  • Boore, D. M. (1986a), The Effect of Finite Bandwidth on Seismic Scaling Rrelationships. In Earthquake Source Mechanics (S. Das, J. Boatwright, and C. Scholz, eds.) Geophysical Monograph 37 (American Geophysical Union, Washington, D. C. 1986a) pp. 275–283.

    Google Scholar 

  • Boore, D. M. (1986b), Short-period P- and S-wave Radiation from Large Earthquakes: Implications for Spectral Scaling Relations, Bull. Seismol. Soc. Am. 76, 43–64.

    Google Scholar 

  • Boore, D. M. (1989a), Quantitative Ground-Motion Estimates. In Earthquake Hazards and the Design of Constructed Facilities in the Eastern United States (K. H. Jacob and C. J. Turkstra, eds.) Annals of the New York Academy of Sciences 558, 81–94.

    Google Scholar 

  • Boore, D. M. (1989b), The Richter Scale: Its Development and Use for Determining Earthquake Source Parameters, Tectonophysics 166, 1–14.

    Article  Google Scholar 

  • Boore, D. M. (1995), Prediction of Response Spectra for the Saguenay earthquake. In Proceedings: Modeling Earthquake Ground Motion at Close Distances, Electric Power Research Institute Report EPRI TR-104975, 6–1–6–14.

    Google Scholar 

  • Boore, D. M. (1996), SMSIM - Fortran Programs for Simulating Ground Motions from Earthquakes: Version 1.0, U.S. Geol. Surv. Open-File Rept. 96–80-A, 96–80-B, 73 pp.

    Google Scholar 

  • Boore, D. M. (1999), Basin Waves on a Seafloor Recording of the 1990 Upland, California, Earthquake: Implications for Ground Motions from a Larger Earthquake, Bull. Seismol. Soc. Am. 89, 317–324.

    Google Scholar 

  • Boore, D. M. (2000), SMSIM - Fortran Programs for Simulating Ground Motions from Earthquakes: Version 2.0-A Revision of OFR 96–80-A, U.S. Geol. Surv. Open-File Rept. OF 00–509, 55 pp. (available at http://geopubs.wr.usgs.gov/open-file/of00-509/).

  • Boore, D. M. (2002), SMSIM: Stochastic Method SIMulation of Ground Motion from Earthquakes. In IASPEI Centennial International Handbook of Earthquake and Engineering Seismology (W. Lee, K. Kanamori, P. Jennings, and C. Kisslinger, eds), Academic press, Chapter 85.13, (in press).

    Google Scholar 

  • Boore, D. M. and Atkinson, G. M. (1987), Stochastic Prediction of Ground Motion and Spectral Response Parameters at Hard-rock Sites in Eastern North America, Bull. Seismol. Soc. Am. 77, 440–467.

    Google Scholar 

  • Boore, D. M. and Boatwright, J. (1984), Average Body-wave Radiation Coefficients, Bull. Seismol. Soc. Am. 74, 1615–1621.

    Google Scholar 

  • Boore, D. M. and Joyner, W. B. (1984), A Note on the Use of Random Vibration Theory to Predict Peak Amplitudes of Transient Signals, Bull. Seismol. Soc. Am. 74, 2035–2039.

    Google Scholar 

  • Boore, D. M. and Joyner, W. B. (1991), Estimation of Ground Motion at Deep-soil Sites in Eastern North America, Bull. Seismol. Soc. Am. 81, 2167–2185.

    Google Scholar 

  • Boore, D. M. and Joyner, W. B. (1997), Site amplifications for Generic Rock Sites, Bull. Seismol. Soc. Am. 87, 327–341.

    Google Scholar 

  • Boors, D. M., Joyner, W. B., and Wennerberg, L. (1992), Fitting the Stochastic CO 2 Source Model to Observed Response Spectra in Western North America: Trade-offs between Au and ic, Bull. Seismol. Soc. Am. 82, 1956–1963.

    Google Scholar 

  • Boore, D. M., Joyner, W. B., and Fumal, T. E. (1997), Equations for Estimating Horizontal Response Spectra and Peak Acceleration from Western North American Earthquakes: A Summary of Recent Work, Seism. Res. Lett. 68, 128–153.

    Google Scholar 

  • Brune, J. N. (1970), Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res. 75, 4997–5009.

    Article  Google Scholar 

  • Brune, J. N. (1971), Correction, J. geophys. Res. 76, 5002.

    Article  Google Scholar 

  • Budnitz, R. J., Apostolakis, G., Boore, D. M., Cluff, L. S., Coppersmith, K. J., Cornell, C. A., and Morris, P. A. (1997), Recommendations For Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, NUREG/CR-6372, Washington, D.C.: U.S. Nuclear Regulatory Commission.

    Book  Google Scholar 

  • Budnitz, R. J., Apostolakis, G., Boore, D. M., Cluff, L. S., Coppersmith, K. J., Cornell, C. A., and Morris, P. A. (1998), Use of Technical Expert Panels: Applications to Probabilistic Seismic Hazard Analysis, Risk Analysis 18, 463–469.

    Article  Google Scholar 

  • Campbell, K. W. (1999), Hybrid Empirical Model for Estimating Strong Ground Motion in Regions of Limited Strong-motion Recordings, presented at OECD-NEA Workshop on Engineering Characterization of Seismic Input, Brookhaven National Laboratory, Upton, NY, Nov. 15–17, 1999.

    Google Scholar 

  • Campbell, K. W. (2002), Strong Motion Attenuation Relations: Commentary and Discussion of Selected Relations. In IASPEI Centennial International Handbook of Earthquake and Engineering Seismology (W. Lee, K. Kanamori, P. Jennings, and C. Kisslinger, eds.), Academic press, Chapter 60, (in press).

    Google Scholar 

  • Campbell, K. W. (2002), Prediction of strong ground motion using the hybrid empirical method: Example application to eastern North America, Bull. Seism. Soc. Am. 92 (in press).

    Google Scholar 

  • Cartwright, D. E. and Longuet-Higgins, M. S. (1956), The Statistical Distribution of the Maxima of a Random Function, Proc. R. Soc. London 237, 212–232.

    Article  Google Scholar 

  • Castro, R. R., Rovelli, A., Cocco, M., DI Bona, M., and Pacor, F. (2001), Stochastic simulation of strong-motion records from the 26 September 1997 (Mw6), Umbria-Marche (central Italy) earthquake, Bull. Seism. Soc. Am. 91, 27–39.

    Article  Google Scholar 

  • Chapman, M. C., Bollinger, G. A., Sibol, M. S., AND Stephenson, D. E. (1990), The Influence of the Coastal Plain Sedimentary Wedge on Strong Ground Motions from the 1886 Charleston, South Carolina, Earthquake, Earthquake Spectra 6, 617–640.

    Article  Google Scholar 

  • Chen, S.-Z. and Atkinson, G. M. (2002), Global comparisons of earthquake source spectra, Bull. Seism. Soc. Am. 92, 885–895.

    Article  Google Scholar 

  • Chernov, Y. K. and Sokolov, V. Y. (1999), Correlation of Seismic Intensity with Fourier Acceleration Spectra, Phys. Chem. Earth 24, 523–528.

    Article  Google Scholar 

  • Chin, B.-H. and Ak!, K. (1991), Simultaneous Study of the Source, Path, and Site Effects on Strong Ground Motion during the 1989 Loma Prieta Earthquake.- A Preliminary Result on Pervasive Nonlinear Site Effects, Bull. Seismol. Soc. Am. 81, 1859–1884.

    Google Scholar 

  • Chin, B.-H. and Ak!, K. (1996), Reply to Leif Wennerberg’s Comment on “Simultaneous Study of the Source, Path, and Site Effects on Strong Ground Motion during the 1989 Loma Prieta earthquake: A Preliminary Result on Pervasive Nonlinear Site Effects”, Bull. Seismol. Soc. Am. 86, 268–273.

    Google Scholar 

  • Cocco, M. and Boatwright, J. (1993), The Envelopes of Acceleration Time Histories, Bull. Seismol. Soc. Am. 83, 1095–1114.

    Google Scholar 

  • Cormier, V. F. (1982), The Effect of Attenuation on Seismic Body Waves, Bull. Seismol. Soc. Am. 72, 5169–5200.

    Google Scholar 

  • Correig, A. M. (1996), On the Measurement of the Predominant and Resonant Frequencies, Bull. Seismol. Soc. Am. 86, 416–427.

    Google Scholar 

  • De Natale, G., Faccioli, E., and Zollo, A. (1988), Scaling of Peak Ground Motions from Digital Recordings of Small Earthquakes at Campi Flegrei, Southern Italy, Pure Appl. Geophys. 126, 37–53.

    Article  Google Scholar 

  • Epri (1993), Guidelines for Determining Design Basis Ground Motions, Electric Power Research Institute, Palo Alto, Calif., Rept. No. EPRI TR-102293, vols. 1–5.

    Google Scholar 

  • Erdik, M. and Durukal, E. (2001), A Hybrid Procedure for the Assessment of Design Basis Earthquake Ground Motions for Near fault Conditions, Soil Dyn. Earthq. Eng. 21, 431–443.

    Google Scholar 

  • Faccioli, E. (1986), A Study of Strong Motions from Italy and Yugoslavia in terms of Gross Source Properties. In Earthquake Source Mechanics (S. Das, J. Boatwright, and C. Scholz, eds.), Amer. Geophys. Union Geophysical Monograph 37, 297–309.

    Article  Google Scholar 

  • Frankel, A., Mueller, C., Barnhard, T., Perkins, D., Leyendecker, E., Dickman, N., Hanson, S. and Hopper, M. (1996), National Seismic Hazard Maps: Documentation June 1996. U.S. Geol. Surv. Open-File Rept. 96–532, 69 pp.

    Google Scholar 

  • Ghosh, A. K. (1992), A Semianalytical Model for Fourier Amplitude Spectrum of Earthquake Ground Motion, Nuclear Engin. and Design 133, 199–208.

    Article  Google Scholar 

  • Greig, G. L. and Atkinson, G. M. (1993), The damage potential of eastern North American earthquakes, Seism. Res. Lett. 64, 119–137.

    Google Scholar 

  • Gusev, A. A., Gordeev, E. I., Guseva, E. M., Petukhin, A. G., and Chebrov, V. N. (1997), The First Version of the A(max)(M(W),R) Relationship for Kamchatka, Pure Appl. Geophys. 149, 299–312.

    Article  Google Scholar 

  • Haddon, R. (1996), Earthquake Source Spectra in Eastern North America, Bull. Seismol. Soc. Am. 86, 1300–1313.

    Google Scholar 

  • Hanks, T. C. (1979), b Values and w v Seismic Source Models: Implications for Tectonic Stress Variations along Active Crustal Fault Zones and the Estimation of High frequency Strong Ground Motion, J. Geophys. Res. 84, 2235–2242.

    Article  Google Scholar 

  • Hanks, T. C. (1982), furax, Bull. Seismol. Soc. Am. 72, 1867–1879.

    Google Scholar 

  • Hanks, T. C. and Boore, D. M. (1984), Moment-Magnitude Relations in Theory and Practice, J. Geophys. Res. 89, 6229–6235.

    Article  Google Scholar 

  • Hanks, T. C. and Johnston, A. C. (1992), Common Features of the Excitation and Propagation of Strong Ground Motion for North American Earthquakes, Bull. Seismol. Soc. Am. 82, 1–23.

    Google Scholar 

  • Hanks, T. C. and Kanamori, H. (1979), A Moment Magnitude Scale, J. Geophys. Res. 84, 2348–2350.

    Google Scholar 

  • Hanks, T. C. and Mcguire, R. K. (1981), The Character of High frequency Strong Ground Motion, Bull. Seismol. Soc. Am. 71, 2071–2095.

    Google Scholar 

  • Harik, I. E., Allen, D. L., Street, R. L., Guo, M., Graves, R. C., Harison, R. C., and Gawry, M. J. (1997), Seismic Evaluation of Brent-Spence Bridge, J. Struct. Eng. 123, 1269–1275.

    Article  Google Scholar 

  • Harmsen, S. (2002), SEISMOGRAPHS FROM THE INTERACTIVE DEAGGREGATION WEB PAGE, http://eqint1.cr.usgs.gov/eq/html/stochastic_seismogram_theory.html

  • Hartzell, S. H. and Heaton, T. H. (1988), Failure of Self-similarity for Large (M,, > 8 1/4) Earthquakes, Bull. Seismol. Soc. Am. 78, 478–488.

    Google Scholar 

  • Hartzell, S., Harmsen, S., Frankel, A., and Larsen, S. (1999), Calculation of Broadband Time Histories of Ground Motion: Comparison of Methods and Validation Using Strong-ground Motion from the 1994 Northridge Earthquake, Bull. Seismol. Soc. Am. 89, 1484–1504.

    Google Scholar 

  • Hartzell, S., Leeds, A., Frankel, A., Williams, R. A., Odum, J., Stephenson, W., and Silva, W. (2002), Simulation of broadband ground motion including nonlinear soil effects for a magnitude 6.5 earthquake on the Seattle fault, Seattle, Washington, Bull. Seism. Soc. Am. 92, 831–853.

    Article  Google Scholar 

  • Herrero, A. and Bernard, P. (1994), A Kinematic Self-similar Rupture Process for Earthquakes, J. Geophys. Res. 84, 1216–1228.

    Google Scholar 

  • Herrmann, R. B. (1985), An Extension of Random Vibration Theory Estimates of Strong Ground Motion to Large Distances, Bull. Seismol. Soc. Am. 75, 1447–1453.

    Google Scholar 

  • Herrmann, R. B. and Akinci, A. (2000), Mid-America Ground Motion Models, http://www.eas.slu.edu/People/RBHerrmann/MAEC/maecgnd.html

  • Hisada, Y. (2000), A Theoretical Omega-square Model Considering the Spatial Variation in Slip and Rupture Velocity, Bull. Seismol. Soc. Am. 90, 387–400.

    Article  Google Scholar 

  • Hlatywayo, D. J. (1997), Seismic Hazard in Central Southern Africa, Geophys. J. Int. 130, 737–745.

    Article  Google Scholar 

  • Hwang, H. (2001), Simulation of Earthquake ground motion. In Monte Carlo Simulation (Schuelle & Spanos, eds.) (Balkema, Rotterdam 2001) pp. 467–473.

    Google Scholar 

  • Hwang, H. and Huo, J.-R. (1994), Generation of Hazard-consistent Ground Motion, Soil Dyn. Earthq. Eng. 13, 377–386.

    Google Scholar 

  • Hwang, H. and Huo, J.-R. (1997), Attenuation Relations of Ground Motion for Rock and Soil Sites in Eastern United States, Soil Dyn. Earthq. Eng. 13, 363–372.

    Google Scholar 

  • Hwang, H., Lin, H., and Huo, J.-R. (1997), Site Coefficients for Design of Buildings in Eastern United States, Soil Dyn. Earthq. Eng. 16, 29–40.

    Google Scholar 

  • Hwang, H., Pezeshk, S., Lin, Y. W., He, J., and Chiu, J. M. (2001a), Generation of Synthetic Ground Motion, CD Release 01–02, Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana, IL.

    Google Scholar 

  • Hwang, H., Liu, J. B., and Chid, Y. H. (2001b), Seismic Fragility Analysis of Highway Bridges, CD Release 01–06, Mid-America Earthquake Center, University of Illinois at Urbana-Champaign, Urbana, IL.

    Google Scholar 

  • Iglesias, A., Singh, S. K., Pacheco, J. F., and Ordaz, M. (2002), A source and wave propagation study of the Copalillo, Mexico, earthquake of 21 July 2000 (M,N5.9): Implications for seismic hazard in Mexico City from inslab earthquakes, Bull. Seism. Soc. Am. 92, 1060–1071.

    Article  Google Scholar 

  • Jibson, R. W. (1993), Predicting Earthquake-induced Landslide Displacements Using Newmark’s Sliding Block Analysis, Transportation Research Record 1411, National Research Council, Washington, D.C., 9–17.

    Google Scholar 

  • Jibson, R. W., Harp, E. L., and Michael, J. A. (1998), A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example from the Los Angeles, California, Area, U.S. Geol. Surv. Open-File Rept. 98–113, 17 pp.

    Google Scholar 

  • Joyner, W. B. (1984), A Scaling Law for the Spectra of Large Earthquakes, Bull. Seismol. Soc. Am. 74, 1167–1188.

    Google Scholar 

  • Joyner, W. B. (1995), Stochastic Simulation of Near-source Earthquake Ground Motion. In Proceedings: Modeling Earthquake Ground Motion At Close Distances, Electric Power Research Institute Report Epri Tr-104975, 8–1–8–24.

    Google Scholar 

  • Joyner, W. B. (1997), Ground Motion Estimates for the Northeastern U.S. or Southeastern Canada. In Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, Senior Seismic Hazard Analysis Committee (R. Budnitz, G. Apostolakis, D. Boore, L. Cluff, K. Coppersmith, A. Cornell, and P. Morris eds.), U.S. Nuclear Reg. Comm. Rept. NUREG/CR-6372, Washington, D.C.

    Google Scholar 

  • Joyner, W. B. (2000), Strong Motion from Surface Waves in Deep Sedimentary Basins, Bull. Seismol. Soc. Am. 90, S95—S112.

    Article  Google Scholar 

  • Joyner, W. B. and Boore, D. M. (1988), Measurement, Characterization, and Prediction of Strong Ground Motion, In Earthquake Engineering and Soil Dynamics II, Proc. Am. Soc. Civil Eng. Geotech. Eng. Div. Specialty Conf., June 27–30, 1988, Park City, Utah, 43–102.

    Google Scholar 

  • Kamae, K. and Irikura, K. (1992), Prediction of site-specific strong ground motion using semiempirical methods, in Proc. of the Tenth World Conference on Earthquake Engineering, Madrid, Spain, 19–24 July 1992, 801–806.

    Google Scholar 

  • Kamae, K., Irikura, K., and Pitarka, A. A. (1998), A Technique for Simulating Strong Ground Motion Using Hybrid Green’s Function, Bull. Seismol. Soc. Am. 88, 357–367.

    Google Scholar 

  • KOYAMA, J. The Complex Faulting Process of Earthquakes (Kluwer Academic Publishers, Dordrecht, The Netherlands (1997)), 194 pp.

    Google Scholar 

  • Kumar, S. (2000), Evaluation and Reduction of Liquefaction Potential at a Site in St. Louis, Missouri, Earthquake Spectra 16, 455–472.

    Article  Google Scholar 

  • Lam, N., Wilson, J., and Hutchinson, G. (2000), Generation of Synthetic Earthquake Accelerograms Using Seismological Modeling: A Review, J. Earthq. Eng. 4, 321–354.

    Google Scholar 

  • Liao, Z.-P. and Jin, X. (1995), A Stochastic Model of the Fourier Phase of Strong Ground Motion, Acta Seismologica Sinica 8, 435–446.

    Article  Google Scholar 

  • Lw, L. and Pezeshk, S. (1998), A stochastic approach in estimating the pseudo-relative spectral velocity, Earthquake Spectra 14, 301–317.

    Article  Google Scholar 

  • Liu, L. and Pezeshk, S. (1999), An Improvement on the Estimation of Pseudoresponse Spectral Velocity Using RVT Method, Bull. Seismol. Soc. Am. 89, 1384–1389.

    Google Scholar 

  • Lou, C.-H. (1985), Analysis of the Spatial Variation of Seismic Waves and Ground Movements from SMART-1 Array Data, Earthq. Eng. Struct. Dyn. 13, 561–581.

    Article  Google Scholar 

  • Loh, C.-H. and Yeh, Y.-T. (1988), Spatial Variation and Stochastic Modeling of Seismic Differential Ground Movement, Earthq. Eng. Struct. Dyn. 16, 583–596.

    Article  Google Scholar 

  • Lomnitz-Adler, J. and Lund, F. (1992), The Generation of Quasi-dynamical Accelerograms from Large and Complex Seismic Fractures, Bull. Seismol. Soc. Am. 82, 61–80.

    Google Scholar 

  • Luco, J. E. (1985), On Strong Ground Motion Estimates Based on Models of the Radiated Spectrum, Bull. Seismol. Soc. Am. 75, 641–649.

    Google Scholar 

  • Mahdyiar, M. (2002), Are NEHRP and Earthquake-based Site Effects in Greater Los Angeles Compatible?, Seism. Res. Lett. 73, 39–45.

    Google Scholar 

  • Malagnini, L. and Herrmann, R. B. (2000), Ground-motion scaling in the region of the 1997 Umbria-Marche earthquake (Italy), Bull. Seism. Soc. Am. 90, 1041–1051.

    Article  Google Scholar 

  • Malagnini, L., Herrmann, R. B. and DI Bona, M. (2000), Ground-motion scaling in the Appennines (Italy), Bull. Seism. Soc. Am. 90, 1062–1081.

    Article  Google Scholar 

  • Margaris, B. N. and Boore, D. M. (1998), Determination of Av and xo from Response Spectra of Large Earthquakes in Greece, Bull. Seismol. Soc. Am. 88, 170–182.

    Google Scholar 

  • Margaris, B. N. and Hatzidimitriou, P. M. (2002), Source spectral scaling and stress release estimates using strong-motion records in Greece, Bull. Seism. Soc. Am. 92, 1040–1059.

    Article  Google Scholar 

  • Margaris, B. N. and Papazachos, C. B. (1999), Moment-magnitude Relations Based on Strong-motion Records in Greece, Bull. Seismol. Soc. Am. 89, 442–455.

    Google Scholar 

  • Mcguire, R. K. Ground Motion Estimation in Regions with Few Data, Proc. 8th World Conf. Earthquake Engineering (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, (1984)) II, pp. 327–334.

    Google Scholar 

  • Mcguire, R. K. and Hanks, T. C. (1980), RMS Accelerations and Spectral Amplitudes of Strong Ground Motion during the San Fernando, California, Earthquake, Bull. Seismol. Soc. Am. 70, 1907–1919.

    Google Scholar 

  • Mcguire, R. K., Becker, A. M., and Donovan, N. C. (1984), Spectral Estimates of Seismic Shear Waves, Bull. Seismol. Soc. Am. 74, 1427–1440.

    Google Scholar 

  • Midorikawa, S. and Kobayashi, H. (1978), On Estimation of Strong Earthquake Motions with Regard to Fault, Proceedings 2nd Intern. Conf. Microzonation 2, 825–836.

    Google Scholar 

  • Miles, S. B. and Ho, C. L. (1999), Rigorous Landslide Hazard Zonation Using Newmark’s Method and Stochastic Ground Motion Simulation, Soil Dyn. and Earthq. Eng. 18, 305–323.

    Google Scholar 

  • Miyake, H., Iwata, T., and Irikura, K. (2001), Estimation of Rupture Propagation Direction and Strong Motion Generation area from Azimuth and Distance dependence of Source Amplitude Spectra, Geophys. Res. Lett. 28, 2727–2730.

    Google Scholar 

  • Olafsson, S. and SigbjÖrnsson, R. (1999), A Theoretical Attenuation Model for Earthquake-induced Ground Motion, J. Earthq. Eng. 3, 287–315.

    Google Scholar 

  • Olafsson, S., SigbjÖrnsson, R., and Einarsson, P. (1998), Estimation of Source Parameters and Q from Acceleration Recorded in the Vatnafjoll Earthquake in South Iceland, Bull. Seismol. Soc. Am. 88, 556–563.

    Google Scholar 

  • Ou, G.-B. and Herrmann, R. B. (1990a), A Statistical Model for Ground Motion Produced by Earthquakes at Local and Regional Distances, Bull. Seismol. Soc. Am. 80, 1397–1417.

    Google Scholar 

  • Ou, G.-B. and Herrmann, R. B. (1990b), Estimation Theory for Strong Ground Motion, Seism. Res. Lett. 61, 99–107.

    Google Scholar 

  • Papageorgiou, A. S. and Alu, K. (1983a), A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. I. Description of the Model, Bull. Seismol. Soc. Am. 73, 693–722.

    Google Scholar 

  • Papageorgiou, A. S. and Aki, K. (1983b), A Specific Barrier Model for the Quantitative Description of Inhomogeneous Faulting and the Prediction of Strong Ground Motion. Part II. Applications of the Model, Bull. Seismol. Soc. Am. 73, 953–978.

    Google Scholar 

  • Pezeshk, S., Camp, C. V., Liu, L., and Greve, W. M. (2001), Site Specific Analysis Program (SSAP), version 1.06, Dept. of Civil Eng., U. of Memphis, Memphis, TN.

    Google Scholar 

  • Pitarka, A., Somerville, P., Fukushima, Y., Uptake, T., and Irikura, K. (2000), Simulation of near-fault strong-ground motion using hybrid Green’s functions, Bull. Seism. Soc. Am. 90, 566–586.

    Article  Google Scholar 

  • Pitarka, A., Somerville, P. G., Fukushima, Y., and Uetake, T. (2002), Ground-motion attenuation from the 1995 Kobe earthquake based on simlations using the hybrid Green’s function method, Bull. Seism. Soc. Am. 92, 1025–1031

    Article  Google Scholar 

  • Raoof, M., Herrmann, R. B., and Malagnini, L. (1999), Attenuation and Excitation of Three-component Ground Motion in Southern California, Bull. Seismol. Soc. Am. 89, 888–902.

    Google Scholar 

  • Rathje, E. M., Abrahamson, N. A., and Bray, J. D. (1998), Simplified Frequency Content Estimates of Earthquake Ground Motions, J. Geotech. Geoenviron. Eng. 124, 150–159.

    Article  Google Scholar 

  • Rice, S. O. Mathematical Analysis of Random Noise, reprinted in Selected Papers on Noise and Stochastic Processes (N. Wax, ed.) (Dover Publications, New York, 1954), pp. 133–294.

    Google Scholar 

  • Roumelioti, Z. and Kiratzt, A. (2002), Stochastic simulation of strong-motion records from the 15 April 1979 (M7.1) Montenegro earthquake, Bull. Seism. Soc. Am. 92, 1095–1101.

    Article  Google Scholar 

  • Rovelli, A., Bonamassa, O., Cocco, M., Di Bona, M., and Mazza, S. (1988), Scaling Laws and Spectral Parameters of the Ground Motion in Active Extensional Areas in Italy, Bull. Seismol. Soc. Am. 78, 530–560.

    Google Scholar 

  • Rovelli, A., Cocco, M., Console, R., Alessandrini, B., and Mazza, S. (1991), Ground Motion Waveforms and Source Spectral Scaling from Close-distance Accelerograms in a Compressional Regime Area (Friuli, Northeastern Italy), Bull. Seismol. Soc. Am. 81, 57–80.

    Google Scholar 

  • Rovelli, A., Caserta, A., Malignini, L., and Marra, F. (1994a), Assessment of Potential Strong Motions in the City of Rome, Annali di Geofisica 37, 1745–1769.

    Google Scholar 

  • Rovelli, A., Malagnini, L., Caserta, A., and Marra, F. (1994b), Using 1-D and 2-D Modeling of Ground Motions for Seismic Zonation Criteria: Results for the City of Rome. Annali di Geofisica 38, 591–605.

    Google Scholar 

  • Sabetta, F. and Pugliese, A. (1996), Estimation of Response Spectra and Simulation of Nonstationary Earthquake Ground Motions, Bull. Seismol. Soc. Am. 86, 337–352.

    Google Scholar 

  • Safak, e. and Boore, D. M. (1988), On Low frequency Errors of Uniformly Modulated Filtered White-noise Models for Ground Motions, Earthq. Eng. Struct. Dyn. 16, 381–388.

    Article  Google Scholar 

  • Saragoni, G. R. and Hart, G. C. (1974), Simulation of Artificial Earthquakes, Earthq. Eng. Struct. Dyn. 2, 249–267.

    Article  Google Scholar 

  • Satoh, T. (2002), Empirical frequency-dependent radiation pattern of the 1998 Miyagiken-nanbu earthquake in Japan, Bull. Seism. Soc. Am. 92, 1032–1039.

    Article  Google Scholar 

  • Satoh, T., Kawase, H., and Sato, T. (1997), Statistical Spectral Model of Earthquakes in the Eastern Tohoku District, Japan, Based on the Surface and Borehole Records Observed in Sendai, Bull. Seismol. Soc. Am. 87, 446–462.

    Google Scholar 

  • Savy, J. B., Foxall, W., and Abrahamson, N. (1998), Guidance for Performing Probabilistic Seismic Hazard Analysis for a Nuclear Plant Site: Example Application to the Southeastern Unted States, NUREG/CR 6607, UCRL-ID-133494.

    Google Scholar 

  • Scherbaum, F. (1994), Modeling the Roermond Earthquake of 1992 April 13 by Stochastic Simulation of its High frequency Strong Ground Motion, Geophys. J. Int. 119, 31–43.

    Google Scholar 

  • Scherbaum, F., Palme, C. and Langer, H. (1994), Model parameter optimization for site-dependent simulation of ground motion by simulated annealing - reevaluation of the Ashigara valley prediction experiment, Natural Hazards 10, 275–296.

    Article  Google Scholar 

  • SCHNEIDER, J. and SILVA, W. J. (2000), Earthquake Scenario Ground Motion Hazard Maps for the San Francisco Bay Region, Final report, USGS Grant award #98-HQ-GR-1004.

    Google Scholar 

  • Schneider, J. F., Silva, W. J., Chiou, S.-J., and Stepp, J. C. (1991), Estimation of Ground Motion at Close Distances Using the Band-limited-white-noise Model, Proc. Fourth International Microzonation Conf. H, 187–194.

    Google Scholar 

  • Schneider, J. F., Silva, W. J., and Stark, C. L. (1993), Ground Motion Model for the 1989 M 6.9 Loma Prieta Earthquake Including Effects of Source, Path and Site, Earthquake Spectra 9, 251–287.

    Article  Google Scholar 

  • Hapira, A. and VAN Eck, T. (1993), Synthetic Uniform-Hazard Site Specific Response Spectrum, Natural Hazards 8, 201–215.

    Article  Google Scholar 

  • Silva, W. J. (1992), Factors Controlling Strong Ground Motions and their Associated Uncertainties, Proc. Dynamic Analysis and Design Considerations for High Level Nuclear Waste Repositories, Structures Div./ Am. Soc. Civil Eng., 132–161.

    Google Scholar 

  • Silva, W. J. (1997), Characteristics of Vertical Strong Ground Motions for Applications to Engineering Design, Proc. Of the FHWA/NCEER Workshop on the National Representation of Seismic Ground Motion for New and Existing Highway Facilities (I.M. Friedland, M.S. Power, and R.L. Mayes, eds.), Technical Report NCEER-97–0010.

    Google Scholar 

  • Silva, W. J. and Costantino, C. (1999), Assessment of Liquefaction Potential for the 1995 Kobe, Japan Earthquake Including Finite-source Effects, Final Report, U.S Army Engineer Waterways Experiment Station, Corps of Engineers Contract #DACW39–97-K-0015.

    Google Scholar 

  • Silva, W. J. and Darragh, R. B. (1995), Engineering Characterization of Strong Ground Motion Recorded at Rock Sites, Electric Power Research Institute, Palo Alto, Calif., Report No. TR-102262.

    Google Scholar 

  • Silva, W. J. and Green, R. K. (1989), Magnitude and Distance Scaling of Response Spectral Shapes for Rock Sites with Applications to North American Tectonic Environment, Earthquake Spectra 5, 591–624.

    Article  Google Scholar 

  • Silva, W. J. and Lee, K. (1987), WES RASCAL code for Synthesizing Earthquake Ground Motions, Stateof-the-Art for Assessing Earthquake Hazards in the United States, Report 24, U.S. Army Engineers Waterways Experiment Station, Misc. Paper S-73–1.

    Google Scholar 

  • Silva, W. J. and Wong, I. G. (1992), Assessment of Strong Near-field Earthquake Ground Shaking Adjacent to the Hayward fault, California. In Proc. Second Conf. on Earthq. Hazards in Eastern San Francisco Bay Area (Glenn Borchardt and others, eds.), Calif. Dept. of Conservation, Div. of Mines and Geology Special Publication 113, 503–510.

    Google Scholar 

  • Silva, W. J., Turcotte, T., and Moriwaki, Y. (1988), Soil Response to Earthquake Ground Motion, Electric Power Research Institute, Palo Alto, California, Report No. NP-5747.

    Google Scholar 

  • Silva, W. J., Darragh, R. B., Green, R. K., and Turcotte, F. T. (1989), Estimated Ground Motions for a New Madrid Event, U.S. Army Engineers Waterways Experiment Station, Misc. Paper GL-89–17.

    Google Scholar 

  • Silva, W. J., Darragh, R., Stark, C., Wong, I., Stepp, J. C., Schneider, J., and Chiou, S.-J. (1990), A Methodology to Estimate Design Response Spectra in the Near-source Region of Large Earthquakes Using the Band-limited-white-noise Ground Motion Model, Proc. Fourth U.S. Conf. on Earthq. Eng. 1, 487–494.

    Google Scholar 

  • Silva, W. J., Wong, I. G., and Darragh, R. B. (1991), Engineering Characterization of Earthquake Strong Ground Motions with Applications to the Pacific northwest, U.S. Geol. Surv. Open-File Rept. 91–441-H.

    Google Scholar 

  • Silva, W. J., Abrahamson, N., Toro, G., and Costantino, C. (1997), Description and Validation of the Stochastic Ground Motion Model, Final Report, Brookhaven National Laboratory, Associated Universities, Inc. Upton, New York.

    Google Scholar 

  • Silva, W. J., Mcguire, R., and Costantino, C. (1999), Comparison of Site Specific Soil UHS to Soil Motions Computed with Rock UHS, Proc. of the OECE-NEA Workshop on Engineering Characterization of Seismic Input, Nov. 15–17, 1999, NEA/CSNI/R(2000)2.

    Google Scholar 

  • Silva, W. J., Darragh, R., Gregor, N., Martin, G., Kircher, C., and Abrahamson, N. (2000a), Reassessment of Site Coefficients and Near fault Factors for Building Code Provisions, Final Report, USGS Grant award #98–11Q-GR-1010.

    Google Scholar 

  • Silva, W. J., Youngs, R. R., and Idriss, I. M. (2000b), Development of Design Response Spectral Shapes for Central and Eastern U.S. (CEUS) and Western U.S. (WUS) Rock Site Conditions. Proc. of the OECE-NEA Workshop on Engineering Characterization of Seismic Input Nov. 15–17, 1999 NEA/ CSNI/R(2000)2.

    Google Scholar 

  • Silva, W., Gregor, N., and Darragh, R. (2002), Department of Regional Hard Rock Attenuation Relations for Central and Eastern North America, ftp://ftp.pacificengineering.org/CEUS/

  • Singh, S. K., Ordaz, M., Anderson, J. G., Rodriguez, M., Quaas, R., Mena, E., Ottaviani, M., and Almora, D. (1989), Analysis of Near-source Strong-motion Recordings along the Mexican Subduction Zone, Bull. Seismol. Soc. Am. 79, 1697–1717.

    Google Scholar 

  • Singh, S. K., Ordaz, M., Dattatrayam, R. S., and Gupta, H. K. (1999), A Spectral Analysis of the 21 May 1997, Jabalpur, India, Earthquake (M„,-- 5.8) and Estimation of Ground Motion from Future Earthquakes in the Indian shield region, Bull. Seismol. Soc. Am. 89, 1620–1630.

    Google Scholar 

  • Singh, S. K., Mohanty, W. K., Bansal, B. K., and Roonwal, G. S. (2002), Ground motion in Delhi from future largelgreat earthquakes in the central seismic gap of the Himalayan arc, Bull. Seism. Soc. Am. 92, 555–569.

    Article  Google Scholar 

  • Soxolov, V. (1997), Empirical Models for Estimating Fourier-amplitude Spectra of Ground Acceleration in the Northern Caucasus (Racha Seismogenic Zone), Bull. Seismol. Soc. Am. 87, 1401–1412.

    Google Scholar 

  • Sokolov, V. Y. (1998), Spectral Parameters of the Ground Motions in Caucasian Seismogenic Zones, Bull. seismol. Soc. Am. 88, 1438–1444.

    Google Scholar 

  • Sokolov, V. (2000a), Spectral Parameters of Ground Motion in Different Regions: Comparison of Empirical Models, Soil Dyn. Earthq. Eng. 19, 173–181.

    Google Scholar 

  • Soxolov, V. Y. (2000b), Hazard-consistent ground motions: Generation on the basis of the uniform hazard Fourier spectra, Bull. Seism. Soc. Am. 90, 1010–1027.

    Article  Google Scholar 

  • Sokolov, V., Lox, C. H., and Wen, K. L (2000), Empirical Model for Estimating Fourier Amplitude Spectra of Ground Acceleration in Taiwan region, Earthq. Eng. Struct. Dyn. 29, 339–357.

    Article  Google Scholar 

  • Sokolov, V., Loh, C. H. and Wen, K. L. (2001), Empirical models for site-and region-dependent ground-motion parameters in the Taipei area: A unified approach, Earthquake Spectra /7,313–331.

    Article  Google Scholar 

  • Suzuki, S., Hada, K., and Asano, K. (1998), Simulation of Strong Ground Motions Based on Recorded Accelerograms and the Stochastic Method, Soil Dyn. Earthq. Eng. 17, 551–556.

    Article  Google Scholar 

  • Tamura, K. and Aizawa, K. (1992), Differential Ground Motion Estimation Using a Time-space Stochastic Process Model, Proc. Japan Soc. Civil Eng. 8, 217–223.

    Google Scholar 

  • Tamura, K., Winterstein, S. R., and Shah, H. C. (1991), Spatially Varying Ground Motion Models and their Application to the Estimation of Differential Ground Motion, Proc. Japan Soc. Civil Eng. 8, 153–161.

    Article  Google Scholar 

  • Toro, G. R. (1985), Stochastic Model Estimates of Strong Ground Motion, Section 3 of Seismic Hazard Methodology for Nuclear Facilities in the Eastern United States, Report Prepared for EPRI, Project Number P101–29.

    Google Scholar 

  • Toro, G. R., and Mcguire, R. K. (1987), An Investigation into Earthquake Ground Motion Characteristics in Eastern North America, Bull. Seismol. Soc. Am. 77, 468–489.

    Google Scholar 

  • Toro, G. R., Mcguire, R. K., and Silva, W. J. (1988), Engineering Model of Earthquake Ground Motion for Eastern North America, Electric Power Research Institute, Palo Alto, Calif., Rept. No. RP-6074.

    Google Scholar 

  • Toro, G. R., Silva, W. J., Mcguire, R. K., and Herrmann, R. B.(1992), Probabilistic Seismic Hazard Mapping of the Mississippi Embayment, Seism. Res. Lett. 63, 449–475.

    Google Scholar 

  • Toro, G. R., Abrahamson, N. A., and Schneider, J. F. (1997), Model of Strong Ground Motions from Earthquakes in Central and Eastern North America: Best Estimates and Uncertainties, Seism. Res. Lett. 68, 41–57.

    Google Scholar 

  • Tremblay, R. and Atkinson, G. M. (2001), Comparative study of the inelastic seismic demand of eastern and western Canadian sites, Earthquake Spectra 17, 333–358.

    Article  Google Scholar 

  • Tsai, C. C. P. (1997), Ground Motion Modeling for Seismic Hazard Analysis in the Near-source Regime: An Asperity Model, Pure Appl. Geophys. 149, 265–297.

    Google Scholar 

  • Tsai, C. C. P. (1998a), Ground Motion Modeling in the Near-source Regime: A Barrier Model, Terrestrial Atmosph. Oceanic Sci. 9, 15–30.

    Google Scholar 

  • Tsai, C. C. P. (1998b), Engineering Ground Motion Modeling in the Near-source Regime Using the Specific Barrier Model for Probabilistic Seismic Hazard Analysis, Pure Appl. Geophy. 152, 107–123.

    Google Scholar 

  • Tumarkin, A. G. and Archuleta, R. J. (1994), Empirical Ground Motion Prediction, Annali di Geofisica 37, 1691–1720.

    Google Scholar 

  • Vetter, U. R., Ake, J. P., and Laforge, R. C. (1996), Seismic Hazard Evaluation for Dams in Northern Colorado, USA, Natural Hazards 14, 227–240.

    Article  Google Scholar 

  • Wen, Y. K. and Wu, C. L. (2001), Generation of Ground Motions for Mid-America Cities, Earthquake Spectra 17, 359–384.

    Article  Google Scholar 

  • Wennerberg, L. (1990), Stochastic Summation of Empirical Greens Functions, Bull. Seismol. Soc. Am. 80, 1418–1432.

    Google Scholar 

  • Wennerberg, L. (1996), Comment on “Simultaneous Study of the Source, Path, and Site Effects on Strong Ground Motion During the 1989 Loma Prieta Earthquake: A Preliminary Result on Pervasive Nonlinear Site Effects” by Byau-Heng Chin and Keiiti Aki, Bull. Seismol. Soc. Am. 86, 259–267.

    Google Scholar 

  • Wilson, R. C. (1993), Relation of Arias Intensity to Magnitude and Distance in California, U. S. Geol. Surv. Open-File Rept, 93–556 42 pp.

    Google Scholar 

  • Wong, I. G. and Silva, W. J. (1990), Preliminary Assessment of Potential Strong Earthquake Ground Shaking in the Portland, Oregon, Metropolitan Area, Oregon Geology 52, 131–134.

    Google Scholar 

  • Wong, I. G. and Silva, W. J. (1993), Site-specific Strong Ground Motion Estimates for the Salt Lake Valley, Utah, Utah Geological Survey Misc. Publ. 93–9.

    Google Scholar 

  • Wong, I. G. and Silva, W. J. (1994), Near field Strong Ground Motions on Soil Sites: Augmenting the Empirical Data Base through Stochastic Modeling, Proc. Fifth U.S. National Conference on Earthquake Engineering, Chicago, July 10–14, 1994, III, 55–65.

    Google Scholar 

  • Wong, I. G., Silva, W. J., Darragh, R. B., Stark, C., and Wright, D. H. (1991), Applications of the Band-limited-white-noise Source Model for Predicting Site-specific Strong Ground Motions, Proc. Second Int. Conf. on Recent Advances in Geotech. Earthq. Eng. and Soil Dynamics, Paper 9.13, 1323–1331.

    Google Scholar 

  • Wong, I. G., Silva, W. J., and Main, I. P. (1993), Strong Ground Shaking in the Portland, Oregon, Metropolitan Area: Evaluating the Effects of Local crustal and Cascadia Subduction Zone Earthquakes and Near-surface Geology, Oregon Geology 55, 137–143.

    Google Scholar 

  • Youngs, R. R. and Silva, W. J. (1992), Fitting the w-2 Brune Source Model to California Empirical Strong Motion Data (abs.), Seism. Res. Lett. 63, 34.

    Google Scholar 

  • Yu, G., Anderson, J. G. and Siddharthan, R. (1993), On the Characteristics of Nonlinear Soil Response, Bull. Seismol. Soc. Am. 83, 218–244.

    Google Scholar 

  • Zeng, Y. H., Anderson, J. G., and Yu, G. A. (1994), Composite Source Model for Computing Realistic Synthetic Strong Ground Motions, Geophys. Res. Lett. 21, 725–728.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Boore, D.M. (2003). Simulation of Ground Motion Using the Stochastic Method. In: Ben-Zion, Y. (eds) Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources: The Keiiti Aki Volume. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8010-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8010-7_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7011-4

  • Online ISBN: 978-3-0348-8010-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics