Skip to main content

NMR-based screening methods for lead discovery

  • Chapter
Modern Methods of Drug Discovery

Part of the book series: EXS ((EXS,volume 93))

Abstract

Traditionally the role of nuclear magnetic resonance (NMR) in drug discovery has been as an analytical tool to aid chemists in characterizing small molecule compounds and identifying novel natural products (see Chapter 5). Today, due to the development and massive application of x-ray crystallography and NMR to determine atomic-resolution structures of proteins, nucleic acids, and their complexes, NMR has established itself as a key method in structure based drug design [1] (see also Chapter 8). Unfortunately, structure-based drug design by NMR becomes more difficult with increasing molecular weight of the target. Thus, although rational drug design has proven to be effective for several targets, there has been a major shift to high throughput screening (HTS) of large libraries of compounds. HTS methods only require a sufficiently robust assay which, when miniaturized, is used to screen hundreds of thousands of small molecule compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts GCK (1999) NMR spectroscopy in structure-based drug design. Curr Opin Biotech 10: 42–47

    Article  PubMed  CAS  Google Scholar 

  2. Moore JM (1999) NMR screening in drug discovery. Curr Opin Biotech 10: 54–58

    Article  PubMed  CAS  Google Scholar 

  3. Roberts GCK (2000) Applications of NMR in drug discovery. Drug Discovery Today 5: 230–240

    Article  PubMed  CAS  Google Scholar 

  4. Feeney J, Birdsall B (1993) NMR studies of protein-ligand interactions. In: Roberts GCK (ed): NMR of macromolecules. Oxford University Press, Oxford, 183–215

    Google Scholar 

  5. Jardetzki O, Roberts GCK (1981) NMR in molecular biology. Academic Press, San Diego

    Google Scholar 

  6. Craig DJ, Higgins KA (1998) NMR studies of ligand-macromolecule interactions. Annu Rep NMR Spectrosc 22: 61–138

    Article  Google Scholar 

  7. Shuker SB, Hajduk PJ, Meadows RP et al (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274: 1531–1534

    Article  PubMed  CAS  Google Scholar 

  8. Hajduk PJ, Sheppard G, Nettesheim DG et al (1997) Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. JAm Chem Soc 119: 5818–5827

    Article  CAS  Google Scholar 

  9. Hajduk PJ, Dinges J, Miknis GF et al (1997) NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein. J Med Chem 40: 3144–3150

    Article  PubMed  CAS  Google Scholar 

  10. Hajduk PJ, Dinges J, Schkeryantz JM et al (1999) Novel inhibitors of Erm methyltransferases from NMR and parallel synthesis. J Med Chem 42: 3852–5859

    Article  PubMed  CAS  Google Scholar 

  11. Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog NMR Spectrosc 34: 93–158

    Article  CAS  Google Scholar 

  12. Rizo J, Liu ZP, Gierasch LM (1994) 1H and 15N resonance assignments and secondary structure of cellular retinoic acid-binding protein with and without bound ligand. J Biomol NMR 4: 741–760

    Article  PubMed  CAS  Google Scholar 

  13. Hensmann M, Booker GW, Panayotou G et al (1994) Phosphopeptide binding to the N-terminal SH2 domain of the p85. subunit of PI 3’-kinase: A heteronuclear NMR study. Protein Science 3: 1020–1030

    Article  PubMed  CAS  Google Scholar 

  14. Dalvit C, Floersheim P, Zurini M et al (1999) Use of organic solvents and small molecules for locating binding sites on proteins in solutions. J Biomol NMR 14: 23–32

    Article  PubMed  CAS  Google Scholar 

  15. Pervushin K, Riek R, Wider G et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 23: 12366–12371

    Article  Google Scholar 

  16. Pellecchia M, Sebbel P, Hermanns U et al (1999) Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR. Nat Struct Biol 4: 336–339

    Google Scholar 

  17. Hajduk PJ, Gerfin T, Boehlen JM et al (1999) High-throughput nuclear magnetic resonance-based screening. J Med Chem 42: 2315–2317

    Article  PubMed  CAS  Google Scholar 

  18. Lian LY, Roberts GCK (1993) Effects of chemical exchange on NMR spectra. In: GCK Roberts (ed): NMR of macromolecules. Oxford University Press, Oxford, 153–182

    Google Scholar 

  19. van de Ven FJM (1995) Multidimensional NMR in liquids. VCH, Weinheim

    Google Scholar 

  20. Limmer S, Vogtherr M, Nawrot B et al (1997) Specific recognition of a minimal model of aminoacylated tRNA by the elongation factor Tu of bacterial protein biosynthesis. Angew Chem Int Ed Engl 36: 2485–2489

    Article  CAS  Google Scholar 

  21. Scherf T, Anglister J (1993) A T1 rho-filtered two-dimensional transferred NOE spectrum for studying antibody interactions with peptide antigens. Biophys J 64: 754–761

    Article  PubMed  CAS  Google Scholar 

  22. Hajduk PJ, Olejniczak ET, Fesik SW (1997) One-dimensional relaxation-and diffusion-edited NMR methods for screening compounds that bind to macromolecules. JAm Chem Soc 119: 12257–12261

    Article  CAS  Google Scholar 

  23. Ni F (1994) Recent developments in transferred NOE methods. Prog NMR Spectrosc 26: 517–606

    Article  CAS  Google Scholar 

  24. Meyer B, Weimar T, Peters T (1997) Screening mixtures for biological activity by NMR. Eur J Biochem 246: 705–709

    Article  PubMed  CAS  Google Scholar 

  25. Henrichsen D, Ernst B, Magnani JL et al (1999) Bioaffinity NMR spectroscopy: Identification of an E-selectin antagonist in a substance mixture by transfer NOE. Angew Chem Int Ed Engl 38: 98–102

    Article  CAS  Google Scholar 

  26. Herfurth L, Weimar T, Peters T (2000) Application of 3D TOCSY-TrNOESY for the assignment of bioactive ligands from mixtures. Angew Chem Int Ed Engl 39; 2097–2099

    Article  PubMed  CAS  Google Scholar 

  27. Breeze AL (2000) Isotope-filtered NMR methods for the study of biomolecular structure and interactions. Prog NMR Spectrosc 36: 323: 372

    Google Scholar 

  28. Stejskal EO, Tanner JE (1965) Spin diffusion measurement: Spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42: 288–292

    Article  CAS  Google Scholar 

  29. Lin M, Shapiro MJ (1996) Mixture analysis in combinatorial chemistry. Application of diffusion-resolved NMR spectroscopy. J Org Chem 61: 7617–7619

    Article  PubMed  CAS  Google Scholar 

  30. Lin M, Shapiro MJ, Wareing JR (1997) Screening mixtures by affinity NMR. J Org Chem 62: 8930–8931

    Article  CAS  Google Scholar 

  31. Lin M, Shapiro MJ, Wareing JR (1997) Diffusion-edited NMR—affinity NMR for direct observation of molecular interactions. JAm Chem Soc 119: 5249–5350

    Article  CAS  Google Scholar 

  32. Anderson RC, Lin M, Shapiro MJ (1999) Affinity NMR: Decoding DNA binding. J Comb Chem 1:69–72

    Article  PubMed  CAS  Google Scholar 

  33. Bleicher K, Lin M, Shapiro MJ et al (1998) Diffusion edited NMR: Screening compound mixtures by affinity NMR to detect binding ligands to vancomycin. J Org Chem 63: 8486–8490

    Article  CAS  Google Scholar 

  34. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectra. Angew Chem Int Ed Engl 35: 1784–1788

    Article  Google Scholar 

  35. Klein J, Meinecke R, Mayer M et al (1999) Detecting binding affinity to immobilized receptor proteins in compound libraries by HR-MAS STD NMR. JAm Chem Soc 121: 5336–5337

    Article  CAS  Google Scholar 

  36. Chen A, Shapiro MJ (1998) NOE pumping: A novel NMR technique for identification of compounds with binding affinity to macromolecules. JAm Chem Soc 120: 10258–10259

    Article  CAS  Google Scholar 

  37. Shapiro MJ, Chen A (2000) NOE pumping. 2. A high-throughput method to determine compounds with binding affinity to macromolecules by NMR. JAm Chem Soc 122: 414–415

    Article  Google Scholar 

  38. Vogtherr M, Peters T (2000) Application of NMR based binding assays to identify key hydroxy groups for intermolecular recognition. JAm Chem Soc 122: 6093–6099

    Article  CAS  Google Scholar 

  39. Bemis GW, Murcko MA (1996) The properties of known drugs. 1. Molecular frameworks. J Med Chem 39: 2887–2893

    CAS  Google Scholar 

  40. Bemis GW, Murcko MA (1999) Properties of known drugs. 2. Side chains. J Med Chem 42: 5095–5099

    Article  PubMed  CAS  Google Scholar 

  41. Fejzo J, Lepre CA, Peng JW et al (1999) The SHAPES strategy: An NMR-based approach for lead generation in drug discovery. Chem Biol 6: 755–769

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Vogtherr, M., Fiebig, K. (2003). NMR-based screening methods for lead discovery. In: Hillisch, A., Hilgenfeld, R. (eds) Modern Methods of Drug Discovery. EXS, vol 93. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7997-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7997-2_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9397-8

  • Online ISBN: 978-3-0348-7997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics