Skip to main content

The role of protein 3D-structures in the drug discovery process

  • Chapter

Part of the book series: EXS ((EXS,volume 93))

Abstract

The majority of drugs available today were discovered either by chance observations or by screening synthetic or natural products libraries. In many cases, a trialand-error based approach of chemical modification of lead compounds led to an improvement with respect to potency and reduced toxicity. Since this approach is labor and time-intense, researchers in the pharmaceutical industry are constantly developing methods to increase the efficiency of the drug finding process. Simply put, two directions have evolved from these efforts. The “random” approach involves the development of high-throughput screening assays and the testing of a large number of compounds. Combinatorial chemistry is used to satisfy the need for huge substance libraries. The “rational,” structure-based approach relies on an iterative procedure of structure determination of the target protein, prediction of hypothetical ligands by molecular modeling, specific chemical synthesis and biological testing of compounds (the structure-based drug design cycle). It is becoming evident, that the future of drug discovery does not lie in one of these approaches solely, but rather an intelligent combination. In this chapter, we will concentrate on the protein structure-based drug discovery approach and discuss possible overlaps with complementary technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zimmerle CT, Alter GM (1983) Crystallization-induced modification of cytoplasmic malate dehydrogenase structure and function. Biochemistry 22: 6273–6281

    Article  PubMed  CAS  Google Scholar 

  2. Tanenbaum DM, Wang Y, Williams SP et al (1998) Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc Natl Acad Sci USA 95: 5998–6003

    Article  PubMed  CAS  Google Scholar 

  3. Lu J, Lin CL, Tang C et al (1999) The structure and dynamics of rat apo-cellular retinol-binding protein II in solution: comparison with the X-ray structure. J Mol Biol 286: 1179–1195

    Article  PubMed  CAS  Google Scholar 

  4. Billeter M, Kline AD, Braun W et al (1989) Comparison of the high-resolution structures of the alpha-amylase inhibitor tendamistat determined by nuclear magnetic resonance in solution and by X-ray diffraction in single crystals. J Mol Biol 206: 677–687

    Article  PubMed  CAS  Google Scholar 

  5. Billeter M (1992) Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Q Rev Biophys 25: 325–377

    Article  PubMed  CAS  Google Scholar 

  6. Wuthrich K (1989) Determination of three-dimensional protein structures in solution by nuclear magnetic resonance: an overview. Methods Enzymol 177: 125–131

    Article  PubMed  CAS  Google Scholar 

  7. McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 23: 1–38

    Article  PubMed  CAS  Google Scholar 

  8. Karplus M (1963) Vicinal proton coupling in nuclear magnetic resonance. J Am Chem Soc 85: 2870–2871

    Article  CAS  Google Scholar 

  9. Kuntz ID, Thomason JF, Oshiro CM (1989) Distance geometry. Methods Enzymol 177: 159–204

    Article  PubMed  CAS  Google Scholar 

  10. Scheek RM, van GW, Kaptein R (1989) Molecular dynamics simulation techniques for determination of molecular structures from nuclear magnetic resonance data. Methods Enzymol 177: 204–218

    Article  PubMed  CAS  Google Scholar 

  11. Brunger AT (1997) X-ray crystallography and NMR reveal complementary views of structure and dynamics. Nat Struct Biol 4 Suppl: 862–865

    PubMed  CAS  Google Scholar 

  12. Pervushin K, Riek R, Wider G et al (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94: 12366–12371

    Article  PubMed  CAS  Google Scholar 

  13. Riek R, Wider G, Pervushin K et al (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96: 4918–4923

    Article  PubMed  CAS  Google Scholar 

  14. Riek R, Pervushin K, Wuthrich K (2000) TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution. Trends Biochem Sci 25: 462–468

    Article  PubMed  CAS  Google Scholar 

  15. Lesk AM, Chothia CH (1986) The response of protein structures to amino-acid sequence changes. Philos Trans R Soc London Ser B 317: 345–356

    Article  CAS  Google Scholar 

  16. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  17. Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85: 2444–2448

    Article  PubMed  CAS  Google Scholar 

  18. Zheng Q, Kyle DJ (1996) Accuracy and reliability of the scaling-relaxation method for loop closure: an evaluation based on extensive and multiple copy conformational samplings. Proteins 24: 209–217

    Article  PubMed  CAS  Google Scholar 

  19. Rapp CS, Friesner RA (1999) Prediction of loop geometries using a generalized born model of solvation effects. Proteins 35: 173–183

    Article  PubMed  CAS  Google Scholar 

  20. Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9: 1753–1773

    Article  PubMed  CAS  Google Scholar 

  21. Jones TA, Thirup S (1986) Using known substructures in protein model building and crystallography. EMBO J 5: 819–822

    PubMed  CAS  Google Scholar 

  22. Claessens M, Van Cutsem E, Lasters I et al (1989) Modelling the polypeptide backbone with ‘spare parts’ from known protein structures. Protein Eng 2: 335–345

    Article  PubMed  CAS  Google Scholar 

  23. Li W, Liu Z, Lai L (1999) Protein loops on structurally similar scaffolds: database and conformational analysis. Biopolymers 49: 481–495

    Article  PubMed  CAS  Google Scholar 

  24. Wojcik J, Mornon JP, Chomilier J (1999) New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification. J Mol Biol 289: 1469–1490

    Article  PubMed  CAS  Google Scholar 

  25. Vasquez M (1996) Modeling side-chain conformation. Curr Opin Struct Biol 6: 217–221

    Article  PubMed  CAS  Google Scholar 

  26. Dunbrack RLJ, Karplus M (1994) Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nat Struct Biol 1: 334–340

    Article  PubMed  CAS  Google Scholar 

  27. Bower MJ, Cohen FE, Dunbrack RLJ (1997) Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol 267: 1268–1282

    Article  PubMed  CAS  Google Scholar 

  28. Dunbrack RLJ (1999) Comparative modeling of CASP3 targets using PSI-BLAST and SCWRL. Proteins Suppl 3: 81–87

    Google Scholar 

  29. De Maeyer M, Desmet J, Lasters I (1997) All in one: a highly detailed rotamer library improves both accuracy and speed in the modelling of sidechains by dead-end elimination. Fold Des 2: 53–66

    Article  PubMed  Google Scholar 

  30. Cheng B, Nayeem A, Scheraga HA (1996) From secondary structure to three-dimensional structure: Improved dihedral angle probability distribution function for use with energy searches for native structures of polypeptides and proteins. J Comp Chem 17: 1453–1480

    Article  CAS  Google Scholar 

  31. Shenkin PS, Farid H, Fetrow JS (1996) Prediction and evaluation of side-chain conformations for protein backbone structures. Proteins 26: 323–352

    Article  PubMed  CAS  Google Scholar 

  32. Lovell SC, Word JM, Richardson JS et al (2000) The penultimate rotamer library. Proteins 40: 389–408

    Article  PubMed  CAS  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS et al (1993) PROCHECK: a program to check the stereo-chemical quality of protein structures. J Appl Cryst 26: 283–291

    Article  CAS  Google Scholar 

  34. Hooft RW, Vriend G, Sander C et al (1996) Errors in protein structures. Nature 381: 272

    Article  PubMed  CAS  Google Scholar 

  35. EU 3-D Validation Network (1998) Who checks the checkers? Four validation tools applied to eight atomic resolution structures. J Mol Biol 276: 417–436

    Article  Google Scholar 

  36. Murzin AG, Brenner SE, Hubbard T et al (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540

    PubMed  CAS  Google Scholar 

  37. Hendlich M (1998) Databases for protein-ligand complexes. Acta Crystallogr D Biol Crystallogr 54: 1178–1182

    Article  PubMed  CAS  Google Scholar 

  38. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29: 221–222

    Article  PubMed  CAS  Google Scholar 

  39. Vondrasek J, van Buskirk CP, Wlodawer A (1997) Database of three-dimensional structures of HIV proteinases. Nat Struct Biol 4: 8

    Article  PubMed  CAS  Google Scholar 

  40. Sanchez R, Pieper U, Mirkovic N et al (2000) MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res 28: 250–253

    Article  PubMed  CAS  Google Scholar 

  41. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779–815

    Article  PubMed  CAS  Google Scholar 

  42. Peitsch MC, Schwede T, Guex N (2000) Automated protein modelling—the proteome in 3D. Pharmacogenomics 1: 257–266

    Article  PubMed  CAS  Google Scholar 

  43. Edwards AM, Arrowsmith CH, Christendat D et al (2000) Protein production: feeding the crystallographers and NMR spectroscopists. Nat Struct Biol 7 Suppl: 970–972

    Article  PubMed  CAS  Google Scholar 

  44. Abola E, Kuhn P, Earnest T et al (2000) Automation of x-ray crystallography. Nat Struct Biol 7 Suppl: 973–977

    Article  PubMed  CAS  Google Scholar 

  45. Lamzin VS, Perrakis A (2000) Current state of automated crystallographic data analysis. Not Struct Biol 7 Suppl: 978–981

    Article  CAS  Google Scholar 

  46. Montelione GT, Zheng D, Huang YJ et al (2000) Protein NMR spectroscopy in structural genomics. Nat Struct Biol 7 Suppl: 982–985

    Article  PubMed  CAS  Google Scholar 

  47. Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7 Suppl: 932–934

    Article  PubMed  CAS  Google Scholar 

  48. Service RF (2000) Structural genomics offers high-speed look at proteins. Science 287: 1954–1956

    Article  PubMed  CAS  Google Scholar 

  49. Brenner SE (2000) Target selection for structural genomics. Nat Struct Biol 7 Suppl: 967–969

    Article  PubMed  CAS  Google Scholar 

  50. Marti-Renom MA, Stuart AC, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29: 291–325

    Article  PubMed  CAS  Google Scholar 

  51. Schafferhans A, Klebe G (2001) Docking Ligands onto Binding Site Representations Derived from Proteins built by Homology Modelling. J Mol Biol 307: 407–427

    Article  PubMed  CAS  Google Scholar 

  52. Schapira M, Raaka BM, Samuels HH et al (2000) Rational discovery of novel nuclear hormone receptor antagonists. Proc Nati Acad Sci USA 97: 1008–1013

    Article  CAS  Google Scholar 

  53. Spencer TA, Li D, Russel JS et al (2001) Pharmacophore analysis of the nuclear oxysterol receptor LXRalpha. J Med Chem 44: 886–897

    Article  PubMed  CAS  Google Scholar 

  54. Cushman DW, Cheung HS, Sabo EF et al (1977) Design of potent competitive inhibitors of angiotensin-converting enzyme. Carboxyalkanoyl and mercaptoalkanoyl amino acids. Biochemistry 16: 5484–5491

    Article  PubMed  CAS  Google Scholar 

  55. Lipscomb WN, Reeke GNJ, Hartsuck JA et al (1970) The structure of carboxypeptidase A. 8. Atomic interpretation at 0.2 nm resolution, a new study of the complex of glycyl-L-tyrosine with CPA, and mechanistic deductions. Philos Trans R Soc Lond B Biol Sci 257: 177–214

    Article  PubMed  CAS  Google Scholar 

  56. Petrillo EWJ, Ondetti MA (1982) Angiotensin-converting enzyme inhibitors: medicinal chemistry and biological actions. Med Res Rev 2: 1–41

    Article  PubMed  CAS  Google Scholar 

  57. Goodman LS, Gilman A (1996) Goodman & Gilman’s The pharmakological basis of therapeutics. McGraw-Hill, New York

    Google Scholar 

  58. Eriksson AE, Jones TA, Liljas A (1988) Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4: 274–282

    Article  PubMed  CAS  Google Scholar 

  59. Greer J, Erickson JW, Baldwin JJ et al (1994) Application of the three-dimensional structures of protein target molecules in structure-based drug design. J Med Chem 37: 1035–1054

    Article  PubMed  CAS  Google Scholar 

  60. Wlodawer A, Miller M, Jaskolski M et al (1989) Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 245: 616–621

    Article  PubMed  CAS  Google Scholar 

  61. Thaisrivongs S, Strohbach JW (1999) Structure-based discovery of Tipranavir disodium (PNU140690E): a potent, orally bioavailable, nonpeptidic HIV protease inhibitor. Biopolymers 51: 51–58

    Article  PubMed  CAS  Google Scholar 

  62. Palese P, Schulman JL, Bodo G et al (1974) Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology 59: 490–498

    Article  PubMed  CAS  Google Scholar 

  63. Varghese JN, Laver WG, Colman PM (1983) Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303: 35–40

    Article  PubMed  CAS  Google Scholar 

  64. von Itzstein M, Wu WY, Kok GB et al (1993) Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363: 418–423

    Article  Google Scholar 

  65. Kim CU, Lew W, Williams MA et al (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119: 681–690

    Article  PubMed  CAS  Google Scholar 

  66. Mascaretti OA, Danelon GO, Laborde M et al (1999) Recent advances in the chemistry of beta-lactam compounds as selected active-site serine beta-lactamase inhibitors. Curr Pharm Des 5: 939–953

    PubMed  CAS  Google Scholar 

  67. Heinze-Krauss I, Angehrn P, Charnas RL et al (1998) Structure-based design of beta-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J Med Chem 41: 3961–3971

    Article  PubMed  CAS  Google Scholar 

  68. Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure Fold Des 7: 297–307

    Article  PubMed  CAS  Google Scholar 

  69. Wilson DK, Petrash JM, Quiocho FA (1997) Structural studies of aldose reductase inhibition. In: Structure-based drug design, edited by P. Veerapandian, pp. 229–246. Marcel Dekker, Inc., New York, Basel, Hong Kong

    Google Scholar 

  70. Iwata Y, Arisawa M, Hamada R et al (2001) Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-database search followed by design and synthesis. J Med Chem 44: 1718–1728

    Article  PubMed  CAS  Google Scholar 

  71. Ondetti MA, Rubin B, Cushman DW (1977) Design of specific inhibitors of angiotensin-converting enzyme: new class of orally active antihypertensive agents. Science 196: 441–444

    Article  PubMed  CAS  Google Scholar 

  72. Bohacek RS, McMartin C, Guida WC (1996) The art and practice of structure-based drug design: a molecular modeling perspective. Med Res Rev 16: 3–50

    Article  PubMed  CAS  Google Scholar 

  73. Vidgren J (1998) X-ray crystallography of catechol 0-methyltransferase: perspectives for target-based drug development. Adv Pharmacol 42: 328–331

    Article  PubMed  CAS  Google Scholar 

  74. Masjost B, Ballmer P, Borroni E et al (2000) Structure-based design, synthesis, and in vitro evaluation of bisubstrate inhibitors for catechol 0-methyltransferase (COMT). Chemistry 6: 971–982

    Article  PubMed  CAS  Google Scholar 

  75. Katunuma N, Murata E, Kakegawa H et al (1999) Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo. FEBS Lett 458: 6–10

    Article  CAS  Google Scholar 

  76. Katunuma N, Matsui A, Inubushi T et al (2000) Structure-based development of pyridoxal propionate derivatives as specific inhibitors of cathepsin K in vitro and in vivo. Biochem Biophys Res Commun 267: 850–854

    Article  PubMed  CAS  Google Scholar 

  77. Bayly CI, Black WC, Leger S et al (1999) Structure-based design of COX-2 selectivity into flurbiprofen. Bioorg Med Chem Lett 9: 307–312

    Article  PubMed  CAS  Google Scholar 

  78. Szklarz GD, Halpert JR (1998) Molecular basis of P450 inhibition and activation: implications for drug development and drug therapy. Drug Metab Dispos 26: 1179–1184

    PubMed  CAS  Google Scholar 

  79. Gschwend DA, Sirawaraporn W, Santi DV et al (1997) Specificity in structure-based drug design: identification of a novel, selective inhibitor of Pneumocystis carinii dihydrofolate reductase. Proteins 29: 59–67

    Article  PubMed  CAS  Google Scholar 

  80. Zuccotto F, Brun R, Gonzalez PD et al (1999) The structure-based design and synthesis of selective inhibitors of Trypanosoma cruzi dihydrofolate reductase. Bioorg Med Chem Lett 9: 1463–1468

    Article  PubMed  CAS  Google Scholar 

  81. Rosowsky A, Cody V, Galitsky N et al (1999) Structure-based design of selective inhibitors of dihydrofolate reductase: synthesis and antiparasitic activity of 2, 4-diaminopteridine analogues with a bridged diarylamine side chain. J Med Chem 42: 4853–4860

    Article  PubMed  CAS  Google Scholar 

  82. Cregge RI, Durham SL, Farr RA et al (1998) Inhibition of human neutrophil elastase. 4. Design, synthesis, X-ray crystallographic analysis, and structure-activity relationships for a series of P2-modified, orally active peptidyl pentafluoroethyl ketones. J Med Chem 41: 2461–2480

    Article  PubMed  CAS  Google Scholar 

  83. Filippusson H, Erlendsson LS, Lowe CR (2000) Design, synthesis and evaluation of biomimetic affinity ligands for elastases. J Mol Recognit 13: 370–381

    Article  PubMed  CAS  Google Scholar 

  84. Tedesco R, Thomas JA, Katzenellenbogen BS et al (2001) The estrogen receptor: a structure-based approach to the design of new specific hormone-receptor combinations. Chem Biol 8: 277–287

    Article  PubMed  CAS  Google Scholar 

  85. Stauffer SR, Coletta CJ, Tedesco R et al (2000) Pyrazole ligands: structure-affinity/activity relationships and estrogen receptor-alpha-selective agonists. J Med Chem 43: 4934–4947

    Article  PubMed  CAS  Google Scholar 

  86. Phillips G, Davey DD, Eagen KA et al (1999) Design, synthesis, and activity of 2,6-diphenoxypyridine-derived factor Xa inhibitors. J Med Chem 42: 1749–1756

    Article  PubMed  CAS  Google Scholar 

  87. Arnaiz DO, Zhao Z, Liang A et al (2000) Design, synthesis, and in vitro biological activity of indolebased factor Xa inhibitors. Bioorg Med Chem Lett 10: 957–961

    Article  PubMed  CAS  Google Scholar 

  88. Han Q, Dominguez C, Stouten PF et al (2000) Design, synthesis, and biological evaluation of potent and selective amidino bicyclic factor Xa inhibitors. J Med Chem 43: 4398–4415

    Article  PubMed  CAS  Google Scholar 

  89. Kaminski JJ, Rane DF, Snow ME et al (1997) Identification of novel farnesyl protein transferase inhibitors using three-dimensional database searching methods. J Med Chem 40: 4103–4112

    Article  PubMed  CAS  Google Scholar 

  90. Navia MA (1996) Protein-drug complexes important for immunoregulation and organ transplantation. Curr Opin Struct Biol 6: 838–847

    Article  PubMed  CAS  Google Scholar 

  91. Burkhard P, Hommel U, Sanner M et al (1999) The discovery of steroids and other novel FKBP inhibitors using a molecular docking program. J Mot Biol 287: 853–858

    Article  CAS  Google Scholar 

  92. van Neuren AS, Muller G, Klebe G et al (1999) Molecular modelling studies on G protein-coupled receptors: from sequence to structure? J Recept Signal Transduct Res 19: 341–353

    Article  PubMed  Google Scholar 

  93. Muller G (2000) Towards 3D structures of G protein-coupled receptors: a multidisciplinary approach. Curr Med Chem 7: 861–888

    Article  PubMed  CAS  Google Scholar 

  94. Martin F, Dimasi N, Volpari C et al (1998) Design of selective eglin inhibitors of HCV NS3 proteinase. Biochemistry 37: 11459–11468

    Article  PubMed  CAS  Google Scholar 

  95. Debnath AK, Radigan L, Jiang S (1999) Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J Med Chem 42: 3203–3209

    CAS  Google Scholar 

  96. Hong H, Neamati N, Wang S et al (1997) Discovery of HIV-1 integrase inhibitors by pharmacophore searching. J Med Chem 40: 930–936

    Article  PubMed  CAS  Google Scholar 

  97. Wlodawer A, Vondrasek J (1998) Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 27: 249–284

    Article  PubMed  CAS  Google Scholar 

  98. De Lucca GV, Erickson-Viitanen S, Lam PY (1997) Cyclic HIV protease inhibitors capable of displacing the active site structural water molecule. Drug Discov Today 2: 6–18

    Article  Google Scholar 

  99. Arnold E, Das K, Ding Jet al (1996) Targeting HIV reverse transcriptase for anti-AIDS drug design: structural and biological considerations for chemotherapeutic strategies. Drug Des Discov 13: 29–47

    PubMed  CAS  Google Scholar 

  100. Mao C, Sudbeck EA, Venkatachalam TK et al (2000) Structure-based drug design of non-nucleoside inhibitors for wild-type and drug-resistant HIV reverse transcriptase. Biochem Pharmacol 60: 1251–1265

    Article  PubMed  CAS  Google Scholar 

  101. Wade RC (1997) ‘Flu’ and structure-based drug design. Structure 5: 1139–1145

    Article  PubMed  CAS  Google Scholar 

  102. Shahripour AB, Plummer MS, Lunney EA et al (2002) Structure-based design of nonpeptide inhibitors of interleukin-lbeta converting enzyme (ICE, caspase-1). Bioorg Med Chem 10: 31–40

    Article  PubMed  CAS  Google Scholar 

  103. Zask A, Levin JI, Killar LM et al (1996) Inhibition of matrix metalloproteinases: structure based design. Curr Pharm Des 2: 624–661

    CAS  Google Scholar 

  104. Brown PD (1998) Matrix metalloproteinase inhibitors. Breast Cancer Res Treat 52: 125–136

    Article  PubMed  CAS  Google Scholar 

  105. Matter H, Schwab W, Barbier D et al (1999) Quantitative structure-activity relationship of human neutrophil collagenase (MMP-8) inhibitors using comparative molecular field analysis and X-ray structure analysis. J Med Chem 42: 1908–1920

    Article  PubMed  CAS  Google Scholar 

  106. Cheng M, De B, Pikul S et al (2000) Design and synthesis of piperazine-based matrix metalloproteinase inhibitors. J Med Chem 43: 369–380

    Article  PubMed  CAS  Google Scholar 

  107. Huang H, Martasek P, Roman LJ et al (2000) Synthesis and evaluation of peptidomimetics as selective inhibitors and active site probes of nitric oxide synthases. J Med Chem 43: 2938–2945

    Article  PubMed  CAS  Google Scholar 

  108. Oliver WRJ, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98: 5306–5311

    Article  PubMed  CAS  Google Scholar 

  109. Schevitz RW, Bach NJ, Carlson DG et al (1995) Structure-based design of the first potent and selec-tive inhibitor of human non-pancreatic secretory phospholipase A2. Nat Struct Biol 2: 458–465

    Article  PubMed  CAS  Google Scholar 

  110. Mihelich ED, Schevitz RW (1999) Structure-based design of a new class of anti-inflammatory drugs: secretory phospholipase A(2) inhibitors, SPI. Biochim Biophys Acta 1441: 223–228

    Article  PubMed  CAS  Google Scholar 

  111. Bursi R, Groen MB (2000) Application of (quantitative) structure-activity relationships to progestagens: from serendipity to structure-based design. Eur J Med Chem 35: 787–796

    Article  PubMed  CAS  Google Scholar 

  112. al-Obeidi FA, Wu JJ, Lam KS (1998) Protein tyrosine kinases: structure, substrate specificity, and drug discovery. Biopolymers 47: 197–223

    Article  PubMed  CAS  Google Scholar 

  113. Shakespeare W, Yang M, Bohacek R et al (2000) Structure-based design of an osteoclast-selective, nonpeptide src homology 2 inhibitor with in vivo antiresorptive activity. Proc Natl Acad Sci USA 97: 9373–9378

    Article  PubMed  CAS  Google Scholar 

  114. Toledo LM, Lydon NB, Elbaum D (1999) The structure-based design of ATP-site directed protein kinase inhibitors. Curr Med Chem 6: 775–805

    PubMed  CAS  Google Scholar 

  115. Sudbeck EA, Liu XP, Narla RK et al (1999) Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin Cancer Res 5: 1569–1582

    PubMed  CAS  Google Scholar 

  116. Furet P, Garcia-Echeverria C, Gay B et al (1999) Structure-based design, synthesis, and X-ray crystallography of a high-affinity antagonist of the Grb2-SH2 domain containing an asparagine mimetic. J Med Chem 42: 2358–2363

    Article  PubMed  CAS  Google Scholar 

  117. Burke TRJ, Zhang ZY (1998) Protein-tyrosine phosphatases: structure, mechanism, and inhibitor discovery. Biopolymers 47: 225–241

    Article  PubMed  CAS  Google Scholar 

  118. Doman TN, McGovern SL, Witherbee BJ et al (2002) Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J Med Chem 45: 2213–2221

    Article  PubMed  CAS  Google Scholar 

  119. Yao ZJ, Ye B, Wu XW et al (1998) Structure-based design and synthesis of small molecule protein-tyrosine phosphatase 1B inhibitors. Bioorg Med Chem 6: 1799–1810

    Article  PubMed  CAS  Google Scholar 

  120. Iversen LF, Andersen HS, Branner S et al (2000) Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B. J Biol Chem 275: 10300–10307

    Article  CAS  Google Scholar 

  121. Ealick SE, Babu YS, Bugg CE et al (1991) Application of crystallographic and modeling methods in the design of purine nucleoside phosphorylase inhibitors. Proc Natl Acad Sci USA 88: 11540–11544

    Article  PubMed  CAS  Google Scholar 

  122. Montgomery JA (1994) Structure-based drug design: inhibitors of purine nucleoside phosphorylase. Drug Des Discov 11: 289–305

    PubMed  CAS  Google Scholar 

  123. Dhanaraj V, Cooper JB (1997)Rational design of renin inhibitors. In: Structure-based drug design, edited by P. Veerapandian, pp. 321–342. Marcel Dekker, Inc., New York, Basel, Hong Kong

    Google Scholar 

  124. Hutchins C, Greer J (1991) Comparative modeling of proteins in the design of novel renin inhibitors. Crit Rev Biochem Mol Biol 26: 77–127

    Article  PubMed  CAS  Google Scholar 

  125. Rahuel J, Rasetti V, Maibaum J et al (2000) Structure-based drug design: the discovery of novel non-peptide orally active inhibitors of human renin. Chem Biol 7: 493–504

    Article  PubMed  CAS  Google Scholar 

  126. Nagpal S, Chandraratna RA (2000) Recent developments in receptor-selective retinoids. Curr Pharm Des 6: 919–931

    Article  PubMed  CAS  Google Scholar 

  127. Giranda VL (1994) Structure-based drug design of antirhinoviral compounds. Structure 2: 695–698

    Article  PubMed  CAS  Google Scholar 

  128. Matthews DA, Dragovich PS, Webber SE et al (1999) Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc Natl Acad Sci USA 96: 11000–11007

    Article  PubMed  CAS  Google Scholar 

  129. Reich SH, Johnson T, Wallace MB et al (2000) Substituted benzamide inhibitors of human rhinovirus 3C protease: structure-based design, synthesis, and biological evaluation. J Med Chem 43: 1670–1683

    Article  PubMed  CAS  Google Scholar 

  130. Read M, Harrison RJ, Romagnoli B et al (2001) Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc Natl Acad Sci USA 98: 4844–4849

    Article  PubMed  CAS  Google Scholar 

  131. Sanderson PE, Naylor-Olsen AM (1998) Thrombin inhibitor design. Curr Med Chem 5: 289–304

    PubMed  CAS  Google Scholar 

  132. Stubbs MT, Bode W (1993) A player of many parts: the spotlight falls on thrombin’s structure. Thromb Res 69: 1–58

    Article  PubMed  CAS  Google Scholar 

  133. Costi MP (1998) Thymidylate synthase inhibition: a structure-based rationale for drug design. Med Res Rev 18: 21–42

    Article  PubMed  CAS  Google Scholar 

  134. Greenidge PA, Carlsson B, Bladh LG et al (1998) Pharmacophores incorporating numerous excluded volumes defined by X-ray crystallographic structure in three-dimensional database searching: application to the thyroid hormone receptor. J Med Chem 41: 2503–2512

    Article  PubMed  CAS  Google Scholar 

  135. Callens M, Hannaert V (1995) The rational design of trypanocidal drugs: selective inhibition of the glyceraldehyde-3-phosphate dehydrogenase in Trypanosomatidae. Ann Trop Med Parasitol 89 Suppl 1: 23–30

    Google Scholar 

  136. Aronov AM, Suresh S, Buckner FS et al (1999) Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA 96: 4273–4278

    Article  PubMed  CAS  Google Scholar 

  137. Uckun FM, Mao C, Vassilev AO et al (2000) Structure-based design of a novel synthetic spiroketal pyran as a pharmacophore for the marine natural product spongistatin 1. Bioorg Med Chem Lett 10: 541–545

    Article  PubMed  CAS  Google Scholar 

  138. Zeslawska E, Schweinitz A, Karcher A et al (2000) Crystals of the urokinase type plasminogen activator variant beta(c)-uPAin complex with small molecule inhibitors open the way towards structure-based drug design. J Mol Biol 301: 465–475

    Article  PubMed  CAS  Google Scholar 

  139. Nienaber VL, Davidson D, Edalji R et al (2000) Structure-directed discovery of potent non-peptidic inhibitors of human urokinase that access a novel binding subsite. Structure Fold Des 8: 553–563

    Article  PubMed  CAS  Google Scholar 

  140. Ring CS, Sun E, McKerrow JH et al (1993) Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci USA 90: 3583–3587

    Article  PubMed  CAS  Google Scholar 

  141. Li Z, Chen X, Davidson E et al (1994) Anti-malarial drug development using models of enzyme structure. Chem Biol 1: 31–37

    Article  PubMed  CAS  Google Scholar 

  142. Garforth J, Yin H, McKie JH et al (1997) Rational design of selective ligands for trypanothione reductase from Trypanosoma cruzi. Structural effects on the inhibition by dibenzazepines based on imipramine. J Enzyme Inhib 12: 161–173

    Article  PubMed  CAS  Google Scholar 

  143. McKie JH, Douglas KT, Chan C et al (1998) Rational drug design approach for overcoming drug resistance: application to pyrimethamine resistance in malaria. J Med Chem 41: 1367–1370

    Article  PubMed  CAS  Google Scholar 

  144. Folkers G, Alber F, Amrhein I et al (1997) Integrated homology modelling and X-ray study of herpes simplex virus I thymidine kinase: a case study. J Recept Signal Transduct Res 17: 475–494

    Article  PubMed  CAS  Google Scholar 

  145. Traxler P, Furet P, Mett H et al (1997) Design and synthesis of novel tyrosine kinase inhibitors using a pharmacophore model of the ATP-binding site of the EGF-R. J Pharm Belg 52: 88–96

    PubMed  CAS  Google Scholar 

  146. Mahajan S, Ghosh S, Sudbeck EA et al (1999) Rational design and synthesis of a novel anti-leukemic agent targeting Bruton’s tyrosine kinase (BTK), LFM-A13 [alpha-cyano-beta-hydroxy-betamethyl-N-(2, 5-dibromophenyl)propenamide]. J Biol Chem 274: 9587–9599

    Article  PubMed  CAS  Google Scholar 

  147. Gussio R, Zaharevitz DW, McGrath CF et al (2000) Structure-based design modifications of the paullone molecular scaffold for cyclin-dependent kinase inhibition. Anticancer Drug Des 15: 53–66

    PubMed  CAS  Google Scholar 

  148. Sabb AL, Husbands GM, Tokolics J et al (1999) Discovery of a highly potent, functionally-selective muscarinic M1 agonist, WAY-132983 using rational drug design and receptor modelling. Bioorg Med Chem Lett 9: 1895–1900

    Article  PubMed  CAS  Google Scholar 

  149. Marhefka CA, Moore BM, Bishop TC et al (2001) Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. J Med Chem 44: 1729–1740

    Article  PubMed  CAS  Google Scholar 

  150. Thornton JM, Todd AE, Milburn D et al (2000) From structure to function: approaches and limitations. Nat Struct Biol 7 Suppl: 991–994

    Article  PubMed  CAS  Google Scholar 

  151. Zarembinski TI, Hung LW, Mueller-Dieckmann HJ et al (1998) Structure-based assignment of the biochemical function of a hypothetical protein: a test case of structural genomics. Proc Natl Acad Sci USA 95: 15189–15193

    Article  PubMed  CAS  Google Scholar 

  152. Kleywegt GJ (1999) Recognition of spatial motifs in protein structures. J Mol Biol 285: 1887–1897

    Article  PubMed  CAS  Google Scholar 

  153. Xu LZ, Sanchez R, Sali A et al (1996) Ligand specificity of brain lipid-binding protein. J Biol Chem 271: 24711–24719

    Article  PubMed  CAS  Google Scholar 

  154. Lewis DF (2000) Modelling human cytochromes P450 for evaluating drug metabolism: an update. Drug Metabol Drug Interact 16: 307–324

    Article  PubMed  CAS  Google Scholar 

  155. Doyle DA, Morais CJ, Pfuetzner RA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69–77

    Article  PubMed  CAS  Google Scholar 

  156. Armstrong N, Sun Y, Chen GQ et al (1998) Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395: 913–917

    Article  PubMed  CAS  Google Scholar 

  157. Brejc K, van Dijk WJ, Klaassen RV et al (2001) Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 411: 269–276

    Article  PubMed  CAS  Google Scholar 

  158. Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289: 739–745

    Article  PubMed  CAS  Google Scholar 

  159. Istvan ES, Deisenhofer J (2001) Structural mechanism for stat n inhibition of HMG-CoA reductase. Science 292: 1160–1164

    Article  PubMed  CAS  Google Scholar 

  160. Ban N, Nissen P, Hansen J et al (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905–920

    Article  PubMed  CAS  Google Scholar 

  161. Berchtold H, Hilgenfeld R (1999) Binding of phenol to R6 insulin hexamers. Biopolymers 51: 165–172

    Article  PubMed  CAS  Google Scholar 

  162. Ohlenschlager O, Ramachandran R, Giihrs KH et al (1998) Nuclear magnetic resonance solution structure of the plasminogen-activator protein staphylokinase. Biochemistry 37: 10635–10642

    Article  PubMed  CAS  Google Scholar 

  163. Steinmetzer K, Hillisch A, Behlke J et al (2000) Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif. Proteins 38: 393–406

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Hillisch, A., Hilgenfeld, R. (2003). The role of protein 3D-structures in the drug discovery process. In: Hillisch, A., Hilgenfeld, R. (eds) Modern Methods of Drug Discovery. EXS, vol 93. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7997-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7997-2_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9397-8

  • Online ISBN: 978-3-0348-7997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics