Skip to main content

Physicochemical concepts in drug design

  • Chapter
Modern Methods of Drug Discovery

Part of the book series: EXS ((EXS,volume 93))

Abstract

A successful drug candidate has the right attributes to reach and bind its molecular target and has the desired duration of action. Binding to the target can be optimised by designing the proper three-dimensional arrangement of functional groups. Each chemical entity also has, through its structure, physicochemical and biopharmaceutical properties. These are generally related to processes such as dissolution, oral absorption, uptake into the brain, plasma protein binding, distribution, and metabolism. Therefore fine-tuning of the physicochemical properties has an important place in lead optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lipinski CA, Lombardo F, Dominy BW et al (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Revs 23: 3–25

    Article  CAS  Google Scholar 

  2. Kansy M, Kratzat K, Parrilla I et al (2000) Physicochemical high throughput screening (pC-HTS): Determination of membrane permeability, partitioning and solubility. In: K Gundertofte, FS Jorgensen (eds) Molecular Modeling and Prediction of Bioactivity, Kluwer Academic/Plenum Publishers, 237–243

    Chapter  Google Scholar 

  3. Avdeef A (1998) pH-metric solubility. 1. Solubility-pH profiles from Bjerrum plots. Gibbs buffer and pKa in the solid state. Pharm Pharmacol Commun 4: 165–178

    CAS  Google Scholar 

  4. Stella VL, Martodhardjo S, Rao VM (1999) Aqueous solubility and dissolution rate does not adequately predict in vivo performance: a probe utilizing some N-acyloxymethyl phenytoin prodrugs. J Pharm Sci 88: 775–779

    Article  PubMed  CAS  Google Scholar 

  5. Van de Waterbeemd H, Carter RE, Grassy G et al (1997) Glossary of terms used in computational drug design (IUPAC Recommendations 1997) Pure & Appl Chem 68: 1137–1152

    Article  Google Scholar 

  6. Stewart BH, Chan OH (1998) Use of immobilized artificial membrane chromatography for drug transport applications. J Pharm Sci 87: 1471–1478

    Article  PubMed  CAS  Google Scholar 

  7. Van de Waterbeemd H (2000) Intestinal Permeability: Prediction from Theory. In: J. B. Dressman, H. Lenner (eds): Oral Drug Absorption: Prediction and Assessment. Marcel Dekker, New York, 31–49

    Google Scholar 

  8. Ottiger C, Wunderli-Allenspach H (1997) Partition behaviour of acids and bases in a phosphatidylcholine liposome-buffer equilibrium dialysis system. Eur J Pharm Sci 5: 223–231

    Article  CAS  Google Scholar 

  9. Ottiger C, Wunderli-Allenspach H (1999) Immobilized artificial membrane (IAM)-HPLC for partition studies of neutral and ionized acids and bases in comparison with the liposomal partition system. Pharm Res 16: 643–650

    Article  PubMed  CAS  Google Scholar 

  10. Austin RP, Barton P, Davis AM et al (1998) The effect of ionic strength on liposome-buffer and 1-octanol-buffer distribution coefficients. J Pharm Sci 87: 599–607

    Article  PubMed  CAS  Google Scholar 

  11. Austin RP, Davis AM, Manners CN (1995) Partitioning of ionizing molecules between aqueous buffers and phospholipid veshicles. J Pharm Sci 84: 1180–1183

    Article  PubMed  CAS  Google Scholar 

  12. Barton P, Davis AM, McCarthy DJ et al (1997) Drug-phospholipid interactions. 2. Predicting the sites of drug distribution using n-octanol/water and membrane/water distribution coefficients. J Pharm Sci 86: 1034–1039

    Article  PubMed  CAS  Google Scholar 

  13. Fruttero R, Caron G, Fornatto E et al (1998) Mechanisms of liposomes/water partitioning of (p-methylbenzyl)alkylamines. Pharm Res 15: 1407–1413

    Article  PubMed  CAS  Google Scholar 

  14. Pauletti GM, Wunderli-Allenspach H (1994) Partition coefficients in vitro: artificial membranes as a standardized distribution model. Eur J Pharm Sci 1: 273–282

    Article  CAS  Google Scholar 

  15. Balon K, Riebesehl BU, Müller BW (1999) Determination of liposome partitioning of ionizable drugs by titration. J Pharm Sci 88: 802–806

    Article  PubMed  CAS  Google Scholar 

  16. Artursson P, Palm K, Luthman K (1996) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv Drug Del Rev 22: 67–84

    Article  CAS  Google Scholar 

  17. Irvine JD, Takahashi L, Lockhart K et al (1999) MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci 88: 28–33

    Article  PubMed  CAS  Google Scholar 

  18. Grès MC, Julian B, Bourrié M et al (1998) Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharm Res 15: 726–733

    Article  PubMed  Google Scholar 

  19. Raessi SD, Hidalgo IJ, Segura-Aguilar J et al (1999) Interplay between CYP3A-mediated metabolism and polarized efflux of terfenadine and its metabolites in intestinal epithelial Caco-2 (TC7) cell mono-layers. Pharm Res 16: 625–632

    Article  Google Scholar 

  20. Johnson MD, Anderson BD (1999) In vitro models of the blood-brain barrier to polar permeants: Comparison of transmonolayer flux measurements and cell uptake kinetics using cultured cerebral capillary endothelial cells. J Pharm Sci 88: 620–625

    Article  PubMed  CAS  Google Scholar 

  21. Borchardt RT, Smith PL, Wilson G (eds) (1996) Models for assessing drug absorption and metabolism. Plenum Press, New York

    Google Scholar 

  22. Abraham MH, Le J (1999) The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J Pharm Sci 88: 868–880

    Article  PubMed  CAS  Google Scholar 

  23. Huuskonen J, Salo M, Taskinen J (1998) Aqueous solubility prediction of drugs based on molecular topology and neural network modeling. J Chem Inf Comput Sci 38: 450–456

    Article  PubMed  CAS  Google Scholar 

  24. Leo AJ (1993) Calculating log Poct from structure. Chem Rev 93: 1281–1306

    Article  CAS  Google Scholar 

  25. Buchwald P, Bodor N (1998) Octanol-water partitioning: Searching for predictive models. Curr Med Chem 5: 353–380

    PubMed  CAS  Google Scholar 

  26. Mannhold R, Van de Waterbeemd H (2001) Substructure and whole molecule approaches for calculating log P. J Comput Aided Mol Des 15: 337–354

    Article  PubMed  CAS  Google Scholar 

  27. Palm K, Luthman K, Ungell AL et al (1998) Evaluation of dynamic polar molecular surface area as predictor of drug absorption: Comparison with other computational and experimental predictors. J Med Chem 41: 5382–5392

    Article  PubMed  CAS  Google Scholar 

  28. Clark DE (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J Pharm Sci 88: 807–814

    Article  PubMed  CAS  Google Scholar 

  29. Van de Waterbeemd H, Kansy M (1992) Hydrogen bonding capacity and brain penetration. Chimia 46: 299–303

    Google Scholar 

  30. Clark DE (1999) Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci 88: 815–821

    Article  PubMed  CAS  Google Scholar 

  31. Raevsky OA, Schaper KJ (1998) Quantitative estimation of hydrogen bond contribution to permeability and absorption processes of some chemicals and drugs. Eur J Med Chem 33: 799–807

    Article  CAS  Google Scholar 

  32. Norinder U, Oesterberg T, Artursson P (1999) Theoretical calculation and prediction of intestinal absorption of drugs in humans using MolSurf parametrizaton and PLS statistics. Eur J Pharm Sci 8: 49–56

    Article  PubMed  CAS  Google Scholar 

  33. Winiwarter S, Bonham NM, Ax F et al (1998) Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach. J Med Chem 41: 4939–4949

    Article  PubMed  CAS  Google Scholar 

  34. Camenisch G, Alsenz J, Van de Waterbeemd H et al (1998) Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur J Pharm Sci 6: 313–319

    Article  CAS  Google Scholar 

  35. Norinder U, Sjoeberg P, Oesterberg T (1998) Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J Pharm Sci 87: 952–959

    Article  PubMed  CAS  Google Scholar 

  36. Van de Waterbeemd H (1996) Design of bioactive compounds. In: Van de Waterbeemd, H. (ed): Structure-Property Correlations in Drug Research. Academic Press & R.G. Landes Comp., Austin, 1–9

    Google Scholar 

  37. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening — an overview. Drug Disc Today 3: 160–178

    Article  CAS  Google Scholar 

  38. Agrafiotis DK, Myslik JC, Salemme FR (1999) Advances in diversity profiling and combinatorial series design. Mol Diversity 4: 1–22

    Article  CAS  Google Scholar 

  39. Finn PW (1996) Computer-based screening of compound databases for the identification of novel leads. Drug Disc Today 1: 363–370

    Article  CAS  Google Scholar 

  40. Keighley WW, Nabney IT, Van de Waterbeemd H et al (2003) Data-handling for high throughput screening. In: E Murray (ed): The Principle and Practice of High Throughput Screening. Blackwell Science, London

    Google Scholar 

  41. Smith DA, Jones BC, Walker DK (1996) Design of drugs involving the concepts and theories of drug metabolism and pharmacokinetics. Med Res Revs 16: 243–266

    Article  CAS  Google Scholar 

  42. Van de Waterbeemd H, Smith DA, Jones BC (2001) Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 15: 273–286

    Article  PubMed  Google Scholar 

  43. Kempf DJ (1994) Progress in the discovery of orally bioavailable inhibitors of HIV protease. Perspect Drug Disc Des 2: 427–436

    Article  Google Scholar 

  44. Vacca JP, Dorsey BD, Schleif WA et al (1994) L-735,524: an orally bioavailable human immunodeficiency virus type 1 protease inhibitor. Proc Nat Acad Sci 91: 4096–4100

    Article  PubMed  CAS  Google Scholar 

  45. Lehr P, Billich A, Charpiot B et al (1996) Inhibitors of human immunodeficiency virus type I protease containing 2-aminobenzyl-substituted 4-amino-3-hydroxy-5-phenylpentanoic acid: synthesis, activity, and oral bioavailability. J Med Chem 39: 2060–2067

    Article  PubMed  CAS  Google Scholar 

  46. N’Goka V, Schlewer G, Linget JM et al (1991) GABA-uptake inhibitors: Construction of a general pharmacophore model and successful prediction of a new representative. J Med Chem 34: 2547–2557

    Article  PubMed  Google Scholar 

  47. Von Geldern, TW, Hoffman DJ, Kester, JA et al (1996) Azole endothelin antagonists. 3. Using D log P as a tool to improve absorption. J Med Chem 39: 982–991

    Article  Google Scholar 

  48. Wu, C, Chan MF, Stavros F et al (1997) Discovery of TBC11251, a potent, long acting, orally active endothelin receptor-A selective antagonist. J Med Chem 40: 1690–1697

    Article  PubMed  CAS  Google Scholar 

  49. Van de Waterbeemd H, Camenisch G, Folkers G et al (1998) Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target 6: 151–165

    Article  PubMed  Google Scholar 

  50. Ter Laak AM, Tsai RS, Donné-Op den Kelder GM et al (1994) Lipophilicity and hydrogen-bonding capacity of Hi-antihistaminic agents in relation to their central sedative side-effects. Eur J Pharm Sci 2: 373–384

    Article  Google Scholar 

  51. Testa B, Pagliara A, Carrupt PA (1997) The molecular behaviour of cetirizine. Clin Exp Allerg 27: S13–S18

    Article  Google Scholar 

  52. Glen RC, Martin GR, Hill AP et al (1995) Computer-aided design and synthesis of 5-substituted tryptamines and their pharmacology at the 5-HT, D receptor: discovery of compounds with potential anti-migraine properties. J Med Chem 38: 3566–3580

    Article  PubMed  CAS  Google Scholar 

  53. Boyd SA, Fung AKL, Baker WR et al (1994) Nonpeptide renin inhibitors with good intraduodenal bioavailability and efficacy in dog. J Med Chem 37: 2991–3007

    Article  PubMed  CAS  Google Scholar 

  54. Hamilton HW, Steinbaugh BA, Stewart BH et al (1995) Evaluation of physicochemical parameters important to the oral bioavailability of peptide-like compounds: implications for the synthesis of renin inhibitors. J Med Chem 38: 1446–1455

    Article  PubMed  CAS  Google Scholar 

  55. Chan OH, Stewart BH (1996) Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Disc Today 1: 461–473

    Article  CAS  Google Scholar 

  56. Camenisch G, Folkers G, Van de Waterbeemd H (1996) Review of theoretical passive drug absorption models: Historical background, recent developments and limitations. Pharm Acta Hely 71: 309–327

    Article  CAS  Google Scholar 

  57. Camenisch G, Folkers G, Van de Waterbeemd H (1998) Shapes of membrane permeability-lipophilicity curves: Extension of theoretical models with an aqueous pore pathway. Eur J Pharm Sci 6: 321–329

    Article  CAS  Google Scholar 

  58. Van de Waterbeemd H (1997) Application of physicochemical methods to oral drug absorption estimation. Eur J Pharm Sci 5 Suppl 2: S26–S27

    Google Scholar 

  59. Hiessböck R, Wolf C, Richter E et al (1999) Synthesis and in vitro multidrug resistance modulating activity of a series of dihydrobenzopyrans and tetrahydrohydroquinolines. J Med Chem 42: 1921–1926

    Article  PubMed  Google Scholar 

  60. Tmej C, Chiba P, Huber M et al (1998) A combined Hansch/Free-Wilson approach as predictive tool in QSAR studies on propafenone-type modulators of multidrug resistance. Arch Pharm Pharm Med Chem 331: 233–240

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

van de Waterbeemd, H. (2003). Physicochemical concepts in drug design. In: Hillisch, A., Hilgenfeld, R. (eds) Modern Methods of Drug Discovery. EXS, vol 93. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7997-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7997-2_12

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9397-8

  • Online ISBN: 978-3-0348-7997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics