Skip to main content

3D QSAR in modern drug design

  • Chapter
Modern Methods of Drug Discovery

Part of the book series: EXS ((EXS,volume 93))

Abstract

The belief that there is a direct relationship between chemical structure and biological activity of therapeutic agents is fundamental to the field of medicinal chemistry. Indeed, the efforts of early medicinal chemists focused on well-defined structural modifications to active lead compounds as molecules were developed into drugs. The relationship between chemical properties like solvent partitioning and biological activity was recognized over a century ago [1]. Almost 40 years ago, Hansch, Fujita and co-workers invented the field of Quantitative Structure-Activity Relationships (QSAR) [2]. In this approach hole molecule parameters such as LogPo/w (the partition coefficient for 1-octanol/water partitioning),[3] molar refractivity, shape and topology indices [4], etc. for groups of related compounds are statistically correlated with measures of biological activity to obtain a QSAR equation. This equation relates easy to measure (or predict/calculate) values for molecules to the more difficult to measure biological activities. Once a QSAR is obtained, verified and found to be “predictive,” the biological activity for new chemical entities that may or may not exist can easily be predicted. Numerous success stories from QSAR over the past four decades validate the fundamental relationship between structure and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meyer H (1899) Zur Theorie der Alkoholnarkose; erste Mittheilung: Welche Eigenschaft der Anaesthetica bedingt ihre narkotische Wirkung? Arch Exp Pathol Pharmakol 42: 109–118

    Article  Google Scholar 

  2. Hansch C, Fujita T (1964) analysis. A method for the correlation of biological activity and chemical structure. JAm Chem Soc 86: 1616–1626

    Article  CAS  Google Scholar 

  3. Rekker RF (ed) (1977) The hydrophobic fragmental constant. Its derivation and applications. A means of characterizing membrane systems. Elsevier, New York

    Google Scholar 

  4. Hall LH, Kier LB (1991) The molecular connectivity chi indexes and kappa shape indexes in structure-property relations. In: Boyd D, Lipkowitz K (eds): Reviews of computational chemistry. VCH Publishers, Weinheim, Germany, 367–422

    Chapter  Google Scholar 

  5. Cramer RD, III, Patterson DE, Bunce JD (1988) Comparative molecular field analysis, 1. Effect of shape on binding of steroids to carrier proteins. JAm Chem Soc 110: 5959–5967

    Article  CAS  Google Scholar 

  6. Sybyl molecular modeling suite, Tripos Inc., 1699 S. Hanley Road, St. Louis MO 63144, USA

    Google Scholar 

  7. Kellogg GE, Semus SF, Abraham DJ (1991) HINT — a new method of empirical hydrophobic field calculation for CoMFA. J Comput Aided Mol Design 5: 545–552

    Article  CAS  Google Scholar 

  8. Vaz R (1997) Use of electron densities in comparative molecular field analysis (CoMFA): A quantitative structure activity relationship (QSAR) for electronic effects of groups. Quant-Struct Act Relat 16: 303–308

    Article  CAS  Google Scholar 

  9. Kellogg GE, Kier LB, Gaillard P et al (1996) The E-State fields. Application to 3D QSAR. J Comput Aided Mol Des 10: 513–520

    Article  PubMed  CAS  Google Scholar 

  10. Kellogg GE (1997) Finding optimum field models for 3D QSAR. Med Chem Res 7: 417–427

    CAS  Google Scholar 

  11. Woolfrey JR, Avery MA, Doweyko AM (1998) Comparison of 3D quantitative structure-activity relationship methods: Analysis of the in vitro antimalarial activity of 154 artemisinin analogues by hypothetical active-site lattice and comparative molecular field analysis. J Comput Aided Mol Des 12: 165–181

    Article  PubMed  CAS  Google Scholar 

  12. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indexes in a comparative-analysis (CoMSIA) of drug molecules to correlate and predict their biological-activity. J Med Chem 37: 4130–4146

    Article  PubMed  CAS  Google Scholar 

  13. Wold S, Johansson E, Cocchi M (1993) PLS — Partial Least Squares projections to latent structures. In: Kubinyi H (ed): 3D QSAR in drug design. Theory methods and applications. Escom, Leiden, 523–550

    Google Scholar 

  14. Rogers D, Hopfinger AJ (1994) Application of genetic function approximation to quantitative structure-activity-relationships and quantitative structure-property relationships. J Chem Info Comput Sci 34: 854–866

    Article  CAS  Google Scholar 

  15. Ferguson AM, Heritage T, Jonathon P et al (1997) EVA: A new theoretically based molecular descriptor for use in QSAR/QSPR analysis. J Comput Aided Mol Des 11: 143–152

    Article  PubMed  CAS  Google Scholar 

  16. Tong W, Lowis DR, Perkins R et al (1998) Evaluation of quantitative structure-activity relationship methods for large-scale prediction of chemicals binding to the estrogen receptor. J Chem Info Comput Sci 38: 669–677

    Article  CAS  Google Scholar 

  17. Willet P, Winterman V, Bawden D (1986) Implementation of nearest-neighbor searching in an online chemical structure search system. J Chem Info Comput Sci 26: 36–41

    Article  Google Scholar 

  18. Todeschini R, Gramatica P (1997) 3D-modelling and prediction by WHIM descriptors. Part 5. Theory development and chemical meaning of WHIM descriptors. Quant Struct-Act Relat 16: 113–119

    Article  CAS  Google Scholar 

  19. Martin YC, Bures MG, Danaher EA et al (1993) A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists. J Comput Aided Mol Des 7: 83–102

    Article  PubMed  CAS  Google Scholar 

  20. Klebe G, Abraham U (1993) On the prediction of binding properties of drug molecules by comparative field analysis. J Med Chem 36: 70–80

    Article  PubMed  CAS  Google Scholar 

  21. Thomas BF, Compton DR, Martin BR et al (1991) Modeling the cannabinoid receptor: A three-dimensional quantitative structure activity analysis. Mol Pharmacol 40: 656–665

    PubMed  CAS  Google Scholar 

  22. Pertwee R (1997) Cannabis and cannabinoids: Pharmacology and rationale for clinical use. Pharm Sci 3: 539–545

    CAS  Google Scholar 

  23. Baker D, Pryce G, Croxford JL et al (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404: 84–87

    Article  PubMed  CAS  Google Scholar 

  24. Semus SF (1999) A novel hydropathic intermolecular field analysis (HIFA) for the prediction of ligand-receptor binding affinities. Med Chem Res 9: 535–550

    CAS  Google Scholar 

  25. Waller CL, Oprea TI, Giolitti A et al (1993) 3-dimensional QSAR of human-immunodeficiency-virus(I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. J Med Chem 36: 4152–4160

    Article  PubMed  CAS  Google Scholar 

  26. Oprea TI, Waller CL, Marshall GR (1994) 3-dimensional quantitative structure-activity relationship of human-immunodeficiency-virus-(I) protease inhibitors. 2. Predictive power using limited exploration of alternate binding modes. J Med Chem 37: 2206–2215

    Article  PubMed  CAS  Google Scholar 

  27. Oprea TI, Waller CL, Marshall GR (1994) 3D-QSAR of human immunodeficiency virus (I) protease inhibitors. III Interpretation of CoMFA results. Drug Design and Discovery 12: 29–51

    CAS  Google Scholar 

  28. Holloway MK, Wai JM, Halgren TA et al (1995) A priori prediction of activity for HIV-1 protease inhibitors employing energy minimization in the active-site. J Med Chem 38: 305–317

    Article  PubMed  CAS  Google Scholar 

  29. Wei DT, Meadows JC, Kellogg GE (1997) Effects of entropy on QSAR equations for HIV-1 protease: 1. Using hydropathic binding descriptors. 2. Unrestrained complex structure optimizations. Med Chem Res 7: 259–270

    CAS  Google Scholar 

  30. Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data and empirical rules. J Comput Chem 17: 616–641

    Article  CAS  Google Scholar 

  31. Wu ESC, Kover A, Semus SF (1998) Synthesis and modeling studies of a potent conformationally rigid muscarinic agonist: 1-azabicyclo [2.2.1]heptanespirofuranone. J Med Chem 41: 4181–4185

    Article  PubMed  CAS  Google Scholar 

  32. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28: 857–864

    Article  Google Scholar 

  33. Muszynski IC, Scapozza L, Kovar K-A et al (1999) Quantitative structure-activity relationships of phenyltropanes as inhibitors of three monoamine transporters: classical and CoMFA studies. Quant Struct-Act Relat 18: 342–353

    Article  CAS  Google Scholar 

  34. Pajeva IK, Wiese M (1997) QSAR and molecular modeling of catamphiphilic drugs able to modulate multidrug resistance in tumors. Quant Struct-Act Relat 16: 1–10

    Article  CAS  Google Scholar 

  35. Pajeva IK, Wiese M (1998) Molecular modeling of phenothiazines and related drugs as multidrug resistance modifiers: A comparative molecular field analysis study. J Med Chem 41: 1815–1826

    Article  PubMed  CAS  Google Scholar 

  36. DePriest SA, Mayer D, Naylor CB et al (1993) 3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors: A comparison of CoMFA models based on deduced and experimentally determined active site geometries. J Am Chem Soc 115: 5372–5384

    Article  CAS  Google Scholar 

  37. DePriest SA, Shands EFB, Dammkoehler RA et al (1991) 3D-QSAR: Further studies on inhibitors of angiotensin-converting enzyme. Pharmacochem Libr 16: 405–416

    CAS  Google Scholar 

  38. Sjoestroem M, Eriksson L, Hellberg S et al (1989) Peptide QSARS: PLS modeling and design in principal properties. Prog Clin Biol Res 291: 313–317

    CAS  Google Scholar 

  39. Sprague PW (1995) Automated chemical hypothesis generation and database searching with Catalyst. Persp Drug Discovery Design 3: 1–20

    Article  CAS  Google Scholar 

  40. Waller CL, Marshall GR (1993) 3D-QSAR three dimensional quantitative structure activity relationship of angiotension-converting enzyme and thermolysin inhibitors. II. A comparison of CoMFA models incorporating molecular orbital fields and desolvation free energies based on active-analog and complementary-receptor-field alignment rules. J Med Chem 36: 2390–2403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Kellogg, G.E., Semus, S.F. (2003). 3D QSAR in modern drug design. In: Hillisch, A., Hilgenfeld, R. (eds) Modern Methods of Drug Discovery. EXS, vol 93. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7997-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7997-2_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9397-8

  • Online ISBN: 978-3-0348-7997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics