Skip to main content

Evolution by Curvature of Networks of Curves in the Plane

  • Conference paper
Book cover Variational Problems in Riemannian Geometry

Abstract

This survey describes our project to study the motion by curvature of a network of smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to the Length functional.

Such a flow can represent the evolution of a two-dimensional multiphase system where the energy is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth of grain boundaries.

Moreover, the motion of these networks of curves is the simplest example of curvature flow for sets which are “essentially” non regular.

In this paper, we introduce the problem and we present some results and open problems about existence, uniqueness and, in particular, the global regularity of the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.J. Almgren, J.E. Taylor, and L. Wang, Curvature driven flows: a variational approach, SIAM J. Cont. and Opt. 31 (1993), 387–438.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Altschuler and M. Grayson, Shortening space curves and flow through singularities, J. Diff. Geom. 35 (1992), 283–298.

    MathSciNet  MATH  Google Scholar 

  3. S.J. Altschuler, Singularities of the curve shrinking flow for space curves, J. Diff. Geom. 34 (1991), no. 2, 491–514.

    MathSciNet  MATH  Google Scholar 

  4. S. Angenent, Parabolic equations for curves on surfaces: curves with p-integrable curvature, Ann. of Math. (2) 132 (1990), 451–483.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Angenent, Parabolic equations for curves on surfaces: intersections, blow up and gen-, eralized solutions, Ann. of Math. (2) 133 (1991), 171–215.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.M. Ball, D. Kinderlehrer, P. Podio-Guidugli, and M. Slemrod (eds.), Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids, Springer, Berlin, 1999.

    Book  MATH  Google Scholar 

  7. K.A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton University Press, Princeton, N.J., 1978.

    MATH  Google Scholar 

  8. L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Rat. Mech. Anal. 124 (1993), no. 4, 355–379.

    Article  MathSciNet  MATH  Google Scholar 

  9. D.G. Caraballo, A variational scheme for the evolution of polycrystals by curvature, Ph.D. thesis, Princeton University, 1996.

    Google Scholar 

  10. K.-S. Chou and X.-P. Zhu, Shortening complete plane curves, J. Diff. Geom. 50 (1998), no. 3, 471–504.

    MathSciNet  MATH  Google Scholar 

  11. E. De Giorgi, Barriers, boundaries and motion of manifolds, Scuola Normale Superiore di Pisa, 1995.

    Google Scholar 

  12. E. De Giorgi, Motions of partitions,Variational methods for discontinuous structures (Como, 1994), Progr. Nonlinear Differential Equations Appl., vol. 25, Birkhäuser, Basel, 1996, pp. 1–5.

    Book  Google Scholar 

  13. L.C. Evans and J. Spruck, Motion of level sets by mean curvature I, J. Diff. Geom. 33 (1991), 635–681.

    MathSciNet  MATH  Google Scholar 

  14. M.A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom. 26 (1987), 285–314.

    MathSciNet  MATH  Google Scholar 

  15. M.E. Curtin, Thermomechanics of Evolving Phase Boundaries in the Plane,Oxford Science Publication, New York, 1993.

    Google Scholar 

  16. R.S. Hamilton, Harnack estimate for the mean curvature flow, J. Diff. Geom. 41 (1995), no. 1, 215–226.

    MathSciNet  MATH  Google Scholar 

  17. R.S. Hamilton, Isoperimetric estimates for the curve shrinking flow in the plane, Mod-ern methods in complex analysis (Princeton, NJ, 1992), Princeton University Press, Princeton, NJ, 1995, pp. 201–222.

    Google Scholar 

  18. G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom. 20 (1984), 237–266.

    MathSciNet  MATH  Google Scholar 

  19. G. Huisken,Asymptotic behavior for singularities of the mean curvature flow, J. Diff. Geom. 31 (1990), 285–299.

    MathSciNet  MATH  Google Scholar 

  20. G. Huisken, A distance comparison principle for evolving curves, Asian J. Math. 2 (1998), 127–133.

    MathSciNet  MATH  Google Scholar 

  21. T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, Mem. Amer. Math. Soc., vol. 108(520), AMS, 1994.

    MathSciNet  Google Scholar 

  22. D. Kinderlehrer and C. Liu, Evolution of grain boundaries, Math. Models Methods Appl. Sci. 11 (2001), no. 4, 713–729.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Mantegazza, M. Novaga and V.M. Tortorelli, Motion by curvature of planar networks, in preparation.

    Google Scholar 

  24. L. Simon, Lectures on Geometric Measure Theory, Proc. Center Math. Anal., vol. 3, Australian National University, Canberra, 1983.

    Google Scholar 

  25. H.M. Soner, Motion of a set by the curvature of its boundary, J. Diff. Eqs. 101 (1993), no. 2, 313–372.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Mantegazza, C., Novaga, M., Tortorelli, V.M. (2004). Evolution by Curvature of Networks of Curves in the Plane. In: Baird, P., Fardoun, A., Regbaoui, R., El Soufi, A. (eds) Variational Problems in Riemannian Geometry. Progress in Nonlinear Differential Equations and Their Applications, vol 59. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7968-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7968-2_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9640-5

  • Online ISBN: 978-3-0348-7968-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics