Skip to main content

Status Quo and Open Problems in the Numerical Construction of Spacetimes

  • Conference paper
The Einstein Equations and the Large Scale Behavior of Gravitational Fields

Abstract

The possibility of explicitly constructing solutions to the Einstein equations via computer simulations represents a relatively new, powerful approach to investigate the theory. Numerical relativity is the branch of General Relativity whose goal is to obtain such solutions. Unfortunately, despite several remarkable successes, the field has not yet reached the mature level required to successfully tackle a number of interesting problems. Several open issues slow down the progress in the field and their resolution will be key in realizing its full possibilities. This article presents a brief introduction to the discipline, placing special emphasis on some of the main open conceptual problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alcubierre, M., et al.,Gauge conditions for long-term numerical black hole evolutions without excision, 2003, Phys. Rev. D67 084023.

    MathSciNet  ADS  Google Scholar 

  2. Anderson, L., P. Chrusciel, and H. Friedrich, 1992, Comm Math. Phys. 149 587.

    Article  MathSciNet  ADS  Google Scholar 

  3. Balean, R.M., 1996, Ph. D. Dissertation, University of New England.

    Google Scholar 

  4. T.W. Baumgarte and S.L. Shapiro, Numerical relativity and compact binaries, Phys. Rept. 376 (2003) 41–131.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bishop, N.T., R. Gomez, L. Lehner, M. Maharaj, and J. Winicour, High powered gravitational news, 1997, Phys. Rev. D56 6298–6309.

    MathSciNet  ADS  Google Scholar 

  6. Bondi, H., van der Burg, M., and Metzner, A., Gravitational waves in general relativity VII. Waves from axi-syrnmetric isolated systems, 1962, Proc. Roy. Soc. London Ser. A 270 21–52.

    Article  ADS  Google Scholar 

  7. Brady, P.R., J.D.E. Creighton, and K.S. Thorne, Computing the merger of black-hole binaries: the IBBH problem, 1998, Phys. Rev. D58 061501.

    ADS  Google Scholar 

  8. Brady, P.R., and J.D. Smith, Black hole singularities: a numerical approach, 1995, Phys. Rev. Lett. 75 1256–1259.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Brandt, S., and B. Bruegman, A simple construction of initial data for multiple black holes, 1997, Phys. Rev. Lett. 78 3606–3609.

    Article  ADS  Google Scholar 

  10. Cagliero, L., 1993, Master Thesis; FaMAF-UNC, Operadores simetricos hiperbolicos y una aplicacion a las Ecuaciones de Maxwell

    Google Scholar 

  11. Calabrese, G., J. Pullin, O. Sarbach, and M. Tiglio, Convergence and stability in numerical relativity,2002, Phys. Rev. D66 041501.

    MathSciNet  ADS  Google Scholar 

  12. G. Calabrese, L. Lehner, D. Neilsen, J. Pullin, O. Reula, O. Sarbach and M. Tiglio, Novel finite-differencing techniques for numerical relativity: application to black hole excision, Class. Quant. Gray. 20 (2003) L245–L251.

    MathSciNet  MATH  Google Scholar 

  13. Calabrese G., J. Pullin, O. Sarbach, M. Tiglio and O. Reula, Well posed constraint-preserving boundary conditions for the linearized Einstein equations, 2003, Comm Math. Phys. 240 377–395.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Carpenter, M., J. Nordstrom, and D. Gottlieb, 1998, A stable and conservative interface treatment of arbitrary spatial accuracy, 1999, J. Comp. Phys. 148 341–365.

    Article  MathSciNet  ADS  Google Scholar 

  15. Carpenter, M., Gottlieb D., and Abarbanel S., Time-stable boundary conditions for finite difference schemes solving hyperbolic systems: Methodology and application to higher order compact schemes, 1994, J. Comp. Phys. 111 220–236.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Choptuik, M.W., 1993, Phys. Rev. Lett., Universality and scaling in gravitational collapse of a massless scalar field, 70 9–12.

    Google Scholar 

  17. Choptuik, M.W., E.W. Hirschmann, S.L. Liebling, and F. Pretorius, Critical collapse of the massless scalar field in axisymmetry,2003, Phys. Rev. D 68 044007.

    Article  MathSciNet  ADS  Google Scholar 

  18. Cook, G., Initial data for numerical relativity, 2000, Living Rev. Rel. 5 1.

    Google Scholar 

  19. Corvino, J., and R.M. Schoen, 2003, gr-qc/0301071.

    Google Scholar 

  20. Dain, S., 2002, Lect. Notes Phys. 604 161–182.

    Article  MathSciNet  ADS  Google Scholar 

  21. Dain, S., and Nagy, G., arXiv:gr-qc/0308009.

    Google Scholar 

  22. Engquist, B., 1978, A difference method for initial boundary value problems in general domains in two space dimensions, DCG Progress Report, Dept. of Computer Sciences, Uppsala University.

    Google Scholar 

  23. Frauendiener, J., Calculating initial data for the conformal Einstein equations by pseudo-spectral methods, 1998, Preprint gr-qc/9806103.

    Google Scholar 

  24. Friedrich, H., and G. Nagy, The initial boundary value problem for Einstein’s vacuum field equations, 1999, Communications in Mathematical Physic 201, Issue 3, 619.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Friedrich, H., and A.D. Rendall, The Cauchy problem for the Einstein equations, 2000, Lect. Notes Phys. 540, 127–224.

    Article  MathSciNet  ADS  Google Scholar 

  26. Friedrich, H., and J.M. Stewart, Characteristic initial data and wavefront singularities in general relativity, 1983, Proc. R. Soc. A 385, 345.

    MathSciNet  ADS  Google Scholar 

  27. Garfinkle, D., and C. Gundlach, Symmetry-seeking spacetime coordinates,1999, Class. Quant. Gray. 16, 4111–4123.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Gourgoulhon, E., P. Grandclement, K. Taniguchi, J.-A. Marck, and S. Bonazzola, Quasiequilibrium sequences of synchronized and irrotational binary neutron stars in general relativity. I. Method and tests, 2001, Phys. Rev. D63, 064029.

    ADS  Google Scholar 

  29. Gues, O., 1990, Commun Part. Diff. Eqs. 15 595.

    Article  MathSciNet  MATH  Google Scholar 

  30. Gustaffson, B., H.-O. Kreiss, and J. Oliger, 1995, Time-Dependent Problems and Difference Methods (Wiley, New York, USA).

    Google Scholar 

  31. Gustafsson, B., On the implementation of boundary conditions for the method of lines, 1998, BIT 38(2), 293.

    Article  MathSciNet  MATH  Google Scholar 

  32. H.-O. Kreiss, and G. Scherer, 1977, in Mathematical aspects of finite elements in partial differential equations.

    Google Scholar 

  33. John, F., 1982, Partial Differential equations (Springer Verlag, New York, USA).

    Google Scholar 

  34. Kidder, L. E., M.A. Scheel, and S.A. Teukolsky, Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations 2001, Phys. Rev. D64 064017.

    MathSciNet  ADS  Google Scholar 

  35. Kreiss, H.O., and O.E. Ortiz, Some mathematical and numerical questions connected with first and second order time dependent systems of partial differential equations, 2002, Lect. Notes Phys. 604, 359.

    Article  MathSciNet  ADS  Google Scholar 

  36. Lehner, L. Numerical Relativity: A review, Class. Quant. Gray. 18 R25–R86 (2001) [arXiy:gr-qc/0106072].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Lehner, L., Matching characteristic codes: exploiting two directions, 2000, Int. J. Mod. Phys. D9 459.

    MathSciNet  ADS  Google Scholar 

  38. Lichnerowicz, A., 1944, J. Math. Pures et Appl. 23 37.

    MathSciNet  MATH  Google Scholar 

  39. Lindblom, L., and M.A. Scheel, Energy Norms and the Stability of the Einstein Evolution Equations, 2002, Phys. Rev. D66 084014.

    MathSciNet  ADS  Google Scholar 

  40. Marronetti, P., and R.A. Matzner, Solving the Initial Value Problem of two Black Holes, 2000, Phys. Rev. Lett. 85, 5500–5503.

    Article  MathSciNet  ADS  Google Scholar 

  41. Matzner, R.A., 1995, Science 270 941.

    Article  ADS  Google Scholar 

  42. D. Maxwell, Solutions of the Einstein Constraint Equations with Apparent Horizon Boundary, arXiv:gr-qc/0307117.

    Google Scholar 

  43. Nagy, G., O. Ortiz, and O. Reula, 2003, On the hyperbolicity of the BSSN equations,a second order approach., in preparation.

    Google Scholar 

  44. Neilsen, G., et al., 2003a.

    Google Scholar 

  45. Newman, E.T., and R. Penrose, An approach to gravitational radiation by a method of spin coefficients,1962, J. Math. Phys. 3 566–578.

    Article  MathSciNet  ADS  Google Scholar 

  46. Olsson, P., Math. Comp., Summation by parts,projection and stability I, 64 1035–1065 (1995).

    MathSciNet  MATH  Google Scholar 

  47. Olsson, P., Math. Comp., Summation by parts,projection and stability II, 64 1473–1493 (1995).

    MathSciNet  MATH  Google Scholar 

  48. Poisson, E., and W. Israel, 1989, Phys. Rev. Lett. 63 1796–1799.

    Article  MathSciNet  Google Scholar 

  49. Reula, O. A., Hyperbolic methods for Einstein equations, 1998, Living Rev. Rel. 1 3.

    MathSciNet  Google Scholar 

  50. Sachs, R., Gravitational waves in general relativity VIII. Waves in asymptotically flat space-times., 1962, Proc. Roy. Soc. A 270 103.

    MathSciNet  ADS  Google Scholar 

  51. D. Shoemaker, K. Smith, U. Sperhake, P. Laguna, E. Schnetter and D. Fiske, Moving black holes via singularity excision, Class. Quant. Gray. 20 3729–3744 (2003).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Strand, B., Summation by parts for finite difference approximations for d I dx, 1994, J. Comp. Phys. 110 47–67.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. Strand, B., 1998, Applied Numerical Mathematics 26 497–521.

    Article  MathSciNet  MATH  Google Scholar 

  54. Szilagyi, B., B. Schmidt, and J. Winicour, Boundary conditions in linearized harmonic gravity, 2002, Phys. Rev. D65 064015.

    MathSciNet  ADS  Google Scholar 

  55. Szilagyi, B., and J. Winicour, Well-posed initial boundary evolution in general relativity, 2002, Phys. Rev. D68 041501.

    MathSciNet  ADS  Google Scholar 

  56. Tadmor, E., 2002, Proceedings in Appl. Math. 109 25.

    MathSciNet  Google Scholar 

  57. Tiglio, M., Dynamical control of the constraints growth in free evolutions of Einstein’s equations, 2003, gr-qc/0304062.

    Google Scholar 

  58. Yo, H.-J., T.W. Baumgarte, and S.L. Shapiro, Improved numerical stability of stationary black hole evolution calculations, 2002, Phys. Rev. D66 084026.

    MathSciNet  ADS  Google Scholar 

  59. York, J., 1973, Conformally invariant orthogonal decompositions of symmetric tensors of Riemannian manifolds and the initial value problem, J. Math. Phys. 14 456–464.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. York, J., 1978, in Sources of Gravitational Radiation, edited by L. Smarr (Cambridge University Press., Seattle), 83–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Lehner, L., Reula, O. (2004). Status Quo and Open Problems in the Numerical Construction of Spacetimes. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7953-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7953-8_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9634-4

  • Online ISBN: 978-3-0348-7953-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics