Skip to main content

Abstract

This paper is based on a series of lectures given by the author at the Cargèse Summer School on Mathematical General Relativity and Global Properties of Solutions of Einstein’s Equations, held in Corsica, July 29—august 10, 2002. The general aim of those lectures was to illustrate with some current examples how the methods of global Lorentzian geometry and causal theory may be used to obtain results about the global behavior of solutions to the Einstein equations. This, of course, is a long standing program, dating back to the singularity theorems of Hawking and Penrose [24]. Here we consider some properties of asymptotically de Sitter solutions to the Einstein equations with (by our sign conventions) positive cosmological constant, ⋀> 0. We obtain, for example, some rather strong topological obstructions to the existence of such solutions, and, in another direction, present a uniqueness result for de Sitter space, associated with the occurrence of eternal observer horizons. As described later, these results have rather strong connections with Friedrich’s results [11, 13] on the nonlinear stability of asymptotically simple solutions to the Einstein equations with ⋀ > 0; see also Friedrich’s article elsewhere in this volume. The main theoretical tool from global Lorentzian geometry used to prove these results is the so-called null splitting theorem [16]. This theorem is discussed here, along with relevant background material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Andersson and G.J. Galloway, DS/CFT and spacetime topology, Adv. Theor. Math. Phys. 6 (2002) 307–327.

    MathSciNet  MATH  Google Scholar 

  2. L. Andersson, G.J. Galloway, and R. Howard, A strong maximum principle for weak solutions of quasi-linear elliptic equations with applications to Lorentzian and Riemannian geometry, Comm. Pure Appl. Math. 51 (1998) 581–624.

    Article  MathSciNet  Google Scholar 

  3. J.K. Beem, P.E. Ehrlich, and K.L. Easley, Global Lorentzian geometry, 2 ed., Pure and Applied Mathematics, vol. 202, Marcel Dekker, New York, 1996.

    MATH  Google Scholar 

  4. Raphael Bousso, Adventures in de Sitter space, preprint, hep-th/0205177.

    Google Scholar 

  5. E. Calabi, An extension of E. Hopf ‘s maximum principle with an application to Riemannain geometry, Duke Math. Jour. 25 (1958), 45–56.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Diff. Geom. 6 (1971) 119–128

    MathSciNet  MATH  Google Scholar 

  7. P.T. Chruściel, E. Delay, G.J. Galloway, and R. Howard. Regularity of horizons and the area theorem. Annales H. Poincare, 2 (2001) 109–178.

    Article  ADS  MATH  Google Scholar 

  8. Ray D’Inverno, Introducing Einstein’s relativity, Oxford University Press, Oxford, 1992.

    MATH  Google Scholar 

  9. J.-H. Eschenburg, Comparison theorems and hypersurfaces, Manuscripta Math. 59 (1987), no. 3, 295–323.

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-H. Eschenburg, The splitting theorem for space-times with strong energy condition, J. Diff. Geom. 27 (1988), 477–491.

    MathSciNet  MATH  Google Scholar 

  11. H. Friedrich, On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure., Comm. Math. Phys. 107 (1986) 587–609.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. H. Friedrich, Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant, J. Geom. Phys. 3 (1986) 101–117.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. H. Friedrich, On the global existence and the asymptotic behaviour of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Diff. Geom., 34 (1991) 275–345.

    MathSciNet  MATH  Google Scholar 

  14. G.J. Galloway, Minimal surfaces, spatial topology and singularities in space-time, J. Phys. A 16 (1983), no. 7, 1435–1439.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. G.J. Galloway, The Lorentzian splitting theorem without the completeness assumption, J. Diff. Geom. 29 (1989), 272–389.

    MathSciNet  Google Scholar 

  16. G.J. Galloway Maximum Principles for null hypersurfaces and null splitting theorems, Ann. Henri Poincare 1 (2000) 543–567.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.J. Galloway Some global results for asymptotically simple spacetimes, in: The conformal structure of space-times: Geometry, analysis, numerics, ed. by J. Frauendiener and H. Friedrich, Lecture Notes in Physics, vol. 604, pp 51–60, 2002, Springer Verlag.

    Chapter  Google Scholar 

  18. G. Galloway, K. Schleich, D. Witt, and E. Woolgar, Topological Censorship and Higher Genus Black Holes, Phys. Rev. D 60 (1999) 104039.

    MathSciNet  Google Scholar 

  19. G.J. Galloway and D. Solis, in preparation.

    Google Scholar 

  20. G.J. Galloway, S. Surya and E. Woolgar, A uniqueness theorem for the adS soliton, Phys. Rev. Lett. 88 (2002) 101102.

    Article  MathSciNet  ADS  Google Scholar 

  21. D. Gannon, Singularities in nonsimply connected space-times, J. Math. Phys., 16 (1975) 2364–2367.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class. Quant. Gray. 17 (2000) 4999–5008.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. G. Gibbons and S.W. Hawking, Cosmological event horizons, thermodynamics, and particle creation., Phys. Rev. D 15 (1977) 2738.

    MathSciNet  ADS  Google Scholar 

  24. S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time, Cambridge University Press, Cambridge, 1973.

    Book  MATH  Google Scholar 

  25. S.W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. Lond. A314 (1970) 529–548.

    MathSciNet  ADS  Google Scholar 

  26. D.N. Kupeli, On null submanifolds in spacetimes, Geom. Dedicata 23 (1987), 33–51.

    MathSciNet  MATH  Google Scholar 

  27. H. Blaine Lawson, Jr., Minimal varieties in real and complex geometry, Les Presses de l’Université de Montreal, Montréal, Que., 1974, Séminaire de Mathématiques Supérieures, No. 57 (Été 1973).

    MATH  Google Scholar 

  28. R.P.A.C. Newman, A proof of the splitting conjecture of S.-T. Yau, J. Diff. Geom. 31 (1990) 163–184.

    MATH  Google Scholar 

  29. B. O’Neill, Semi-Riemannian geometry, Academic Press, New York, 1983.

    MATH  Google Scholar 

  30. R. Penrose, Zero rest-mass fields including gravitation: asymptotic behavior, Proc. Roy. Soc. Lond. A 284 159–203.

    Google Scholar 

  31. R. Penrose, Techniques of differential topology in relativity, SIAM, Philadelphia, 1972, (Regional Conf. Series in Appl. Math., vol. 7).

    Book  MATH  Google Scholar 

  32. R. Penrose, R.D. Sorkin and E. Woolgar, A positive mass theorem based on the focusing and retardation of null geodesics, preprint, gr-qc/9301015.

    Google Scholar 

  33. R.M. Wald, General relativity, University of Chicago Press, Chicago, 1984.

    MATH  Google Scholar 

  34. S.-T. Yau Problem section, in Ann. Math. Studies, vol. 102, ed. S.-T. Yau, Princeton, 1982, pp 669–706.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Galloway, G.J. (2004). Null Geometry and the Einstein Equations. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7953-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7953-8_11

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9634-4

  • Online ISBN: 978-3-0348-7953-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics