Skip to main content

Abstract

In contemporary Russian, the word “model” is often associated with a showing of fashionable clothes, that is, with something purely external having no more purpose than to decorate the real human essence. Here, we discuss the very opposite aspect of this notion. When speaking of mathematical models, we imply a speculative construction designed to express the real essence of a phenomenon and the causes of the processes in question. It must be clearly perceived that all natural phenomena are interrelated. The modest abilities of the human intellect do not allow taking all relations into account. But, luckily, some relations are strong, and others are vanishing. So we have a possibility to reveal the main acting forces, discarding all that are of secondary importance. This is the common basic paradigm of all natural sciences, if we exclude their purely descriptive aspects. This paradigm preordains the leading role of mathematics in the process of designing and exploring models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Liapounoff, A. M., 1909, “Sur une classe de figures d’équilibre d’un liquide en rotation, Annales de l’École Normale, 3rd series, 26: 473–483

    MathSciNet  MATH  Google Scholar 

  • Mishchenko, A. S., 1992, “Stationary solutions of nonlinear stochastic equations”, in: Global Analysis. Studies and Applications (Borisovich, Yu. G. and Glicklich, Yu. E., eds.), Berlin, Springer-Verlag: 217–236

    Chapter  Google Scholar 

  • Mishchenko, A. S., Dolbilin, N. P., Zinov’ev, Ju. M., Shtan’ko, A. M., and Shtogrin, M. I., 1996, “Gomologicheskie svojstva dimernyh pokrytij reshetok na poverhnostjah”, Func. an. i ego prilogenia, 30(3): 19–33 (English translation: “Homology properties of dimer coverings of lattices on surfaces”, Functional Analysis and its Applications, 30(3), 1997: 163–173.

    MathSciNet  Google Scholar 

  • Mishchenko, A. S., Dolbilin, N. P., Zinov’ev, Ju. M., Shtan’ko, A. M., and Shtogrin, M. I., 1999, “The two-dimensional Ising model and the Catz-Word determinant”, Izvestiya: Mathematics, 63 (4): 79–100.

    MathSciNet  Google Scholar 

  • Mishchenko, E. F. and Rozov, N. Kh., 1980, Differential Equations with Small Parameters and Relaxation Oscillations, New York, Plenum Press.

    Book  MATH  Google Scholar 

  • Mishchenko, E. F. and Kolesov, A. Y., 1993, “Asymptotic theory of relaxation oscillations”, Proceedings of the Steklov Institute of Mathematics, 197: 3–94.

    Google Scholar 

  • Naidenov, V. I. 1992, “Nonlinear model of the Caspian sea level oscillations”, Mathematical Modeling, 4: 50–64.

    Google Scholar 

  • Poincaré, H., 1902, “Sur la stabilité de l’équilibre des figures piriformes”, Philosophical Transactions of the Royal Society of London, 198, series A.

    Google Scholar 

  • Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., and Mishchenko, E. F., 1962, The Mathematical Theory of Optimal Processes, New York-London, John Wiley and Sons.

    MATH  Google Scholar 

  • Pontryagin, L. S., 1985, Selected Works, Classics of Soviet Mathematics, New York-LondonParis, Gordon and Breach.

    Google Scholar 

  • Zelikin, M. I. and Borisov, V. F., 1994, Theory of Chattering Control with Applications to Astronautics, Robotics, Economics,and Engineering, Boston, Birkhäuser.

    Book  Google Scholar 

  • Zelikin, M. I. and Zelikina, L. F., 1999, “Exact constants in Kolmogorov-type inequalities”, Proceedings of the Steklov Institute of Mathematics, 227: 131–139.

    MathSciNet  Google Scholar 

  • Zelikin, M. I., Zelikina, L. F., and Schulze, J., 1987, “On the forecasting of the fluctuation in level of closed lakes”, in: Proceedings of the 1st World Congress of the Bernoulli Society (Prohorov, Yu. and Sazonov, V V, eds.). Vol. 2, Mathematical Statistic Theory and Applications, Utrecht, VNU Science Press: 655–658.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Mishchenko, E.F., Mishchenko, A.S., Zelikin, M.I. (2004). Adequacy of Mathematical Models in Control Theory, Physics, and Environmental Science. In: Gasca, A.M., Lucertini, M., Nicolò, F. (eds) Technological Concepts and Mathematical Models in the Evolution of Modern Engineering Systems. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7951-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7951-4_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9633-7

  • Online ISBN: 978-3-0348-7951-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics