Skip to main content

Bounds for the Points of Spectral Concentration of One-dimensional Schrödinger Operators

  • Conference paper
Spectral Methods for Operators of Mathematical Physics

Abstract

We investigate the phenomenon of spectral concentration for one-dimensional Schrödinger operators with decaying potentials on the half-line. For suitable classes of short range and long range potentials, we outline systematic procedures which enable numerical estimates of upper bounds for points of spectral concentration to be obtained. Our approach involves use of the Riccati equation to construct appropriate convergent series for a generalised Dirichlet m-function, from which the existence and properties of derivatives of the corresponding spectral functions can be established. An incidental outcome in the case of long range potentials is that upper bounds for embedded singular spectrum can also be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Behncke, Absolute continuity of Hamiltonians with von Neumann Wigner potentials, Proc. AMS 111 (1991), 373–384.

    MathSciNet  MATH  Google Scholar 

  2. H. Behncke, Absolute continuity of Hamiltonians with von Neumann Wigner potentials II, Manuscripta Math. 71 (1991), 163–181.

    Article  MathSciNet  MATH  Google Scholar 

  3. B.M. Brown, M.S.P. Eastham and D.K.R. McCormack, Spectral concentration and perturbed discrete spectra, J. Comp. Appl. Math. 86 (1997), 415–425.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Deift and R. Killip, On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials, Comm. Math. Phys. 203 (1999), 341–347.

    Article  MathSciNet  MATH  Google Scholar 

  5. C.L. Dolph, J.B. Mcleod and D. Thoe, The analytic continuation of the resolvent kernel and scattering operator associated with the Schroedinger operator, J. Math. Anal. Appl. 16 (1966), 311–332.

    Article  MathSciNet  MATH  Google Scholar 

  6. M.S.P. Eastham, On the convexity of the Sturm-Liouville spectral functions with slowly decaying potential, Indian J. Math. 42 (2000), 9–20.

    MathSciNet  MATH  Google Scholar 

  7. D.J. Gilbert and B.J. Harris, Bounds for the points of spectral concentration of Sturm-Liouville problems, Mathematika 47 (2000), 327–337 (2002).

    MathSciNet  Google Scholar 

  8. D.J. Gilbert, B.J. Harris and S. Riehl, The spectral function for Sturm-Liouville problems where the potential is of von Neumann-Wigner type or slowly decaying, J. Differential Equations 201 (2004), 139–159.

    Article  MathSciNet  MATH  Google Scholar 

  9. D.J. Gilbert and D.B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrodinger operators, J. Math. Anal. Appl. 128 (1987), 30–56.

    Article  MathSciNet  MATH  Google Scholar 

  10. B.J. Harris, The form of the spectral functions associated with Sturm- Liouville problems with continuous spectrum, Mathematika 44 (1997), 149–161.

    Article  MathSciNet  MATH  Google Scholar 

  11. D.B. Hinton and J.K. Shaw, Spectral concentration for Hamiltonian systems, Hely. Phys. Acta 58 (1985), 982–994.

    MathSciNet  Google Scholar 

  12. P.D. Hislop and I.M. Segal, Introduction to Spectral Theory, with Applications to Schrödinger Operators, Springer-Verlag, New York, 1996.

    Google Scholar 

  13. K. Kodaira, The eigenvalue problem for ordinary differential equations of the second order, and Heisenberg’s theory of S-matrices, Amer. J. Math. 71 (1949), 921–945.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. von Neumann and E. Wigner, Über merkwürdige diskrete Eigenwerte, Phys. Z. 30 (1929), 465–467.

    MATH  Google Scholar 

  15. S. Naboko, On the dense point spectrum of Schrödinger and Dirac operators, Teoret. Mat. Fiz. 68 (1986), 18–28.

    MathSciNet  Google Scholar 

  16. J.R. Oppenheimer, Three notes on the quantum theory of aperiodic effects, Phys. Rev. 31 (1928), 66–81.

    Article  MATH  Google Scholar 

  17. M. Reed and B. Simon, Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic Press, 1978.

    MATH  Google Scholar 

  18. A. Rybkin, Some new and old asymptotic representations of the Jost solution and the Weyl m-function for Schrödinger operators on the line, Bull. London Math. Soc. 34 (2002), 61–72.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Schrödinger, Quantisierung als Eigenwertproblem III, Ann. der Physik 80 (1926), 457–490.

    Google Scholar 

  20. B. Simon, Operators with singular continuous spectrum, I. General operators, Annals Math. 141 (1995), 131–145.

    Article  MATH  Google Scholar 

  21. E.C. Titchmarsh, Eigenfunction Expansions I, 2nd edition, Oxford University Press, 1962.

    MATH  Google Scholar 

  22. E.C. Titchmarsh, Eigenfunction Expansions II, Oxford University Press, 1958.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Gilbert, D.J., Harris, B.J., Riehl, S.M. (2004). Bounds for the Points of Spectral Concentration of One-dimensional Schrödinger Operators. In: Janas, J., Kurasov, P., Naboko, S. (eds) Spectral Methods for Operators of Mathematical Physics. Operator Theory: Advances and Applications, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7947-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7947-7_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9632-0

  • Online ISBN: 978-3-0348-7947-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics