Skip to main content

WKB and Turning Point Theory for Second-order Difference Equations

  • Conference paper
Spectral Methods for Operators of Mathematical Physics

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 154))

Abstract

A turning point method for difference equations is developed. This method is coupled with the LG-WKB method via matching to provide approximate solutions to the initial value problem. The techniques developed are used to provide strong asymptotics for Hermite polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A. Braun, WKB method for three-term recurrence relations and quasienergies of an anharmonic oscillator, Theoret. and Math. Phys. 37 (1978) 1070–1081.

    Article  Google Scholar 

  2. O. Costin, R. Costin, Rigorous WKB method for finite-order linear recurrence relations with smooth coefficients, SIAM J. Math. Anal. 27 (1996) 110–134.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Deift, K. T.-R. McLaughlin, A Continuum Limit of the Toda Lattice, Memoirs of AMS #624 (1998) Providence, RI.

    Google Scholar 

  4. R.B. Dingle, G.J. Morgan, WKB methods for difference equations I, Appl. Sci. Res. 18 (1967) 221–237.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, Strong Asymptotics of Orthogonal Polynomials with respect to exponential weights, Comm. Pure. Appl. Math. 52 (1999) 1491–1552.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.S. Geronimo, WKB and Turning point Theory for second order difference equations: External Fields and Strong Asymptotics for Orthogonal Polynomials, In prep.

    Google Scholar 

  7. J.S. Geronimo, D. Smith, WKB (Liouville-Green) Analysis of Second Order Difference Equations and Applications, JAT 69 (1992) 269–301.

    MathSciNet  MATH  Google Scholar 

  8. R.E. Langer On the asymptotic solutions of ordinary differential equations, with an application to the Bessel function of large order, Trans. Amer. Math. Soc. 33 (1931) 23–64.

    Article  MathSciNet  Google Scholar 

  9. M. Maejina, W. Van Assche, Probabilistic proofs of asymptotic formulas for some classical polynomials, Math. Proc. Cambridge Philos. Soc. 97 (1985) 499–510.

    Article  MathSciNet  Google Scholar 

  10. P. Nevai, J.S. Dehisa, On asymptotic properties of zeros of orthogonal polynomi-als, SIAM J. Math. Anal. 10 (1979) 1184–1192.

    Article  MathSciNet  MATH  Google Scholar 

  11. F.W.J. Olver, Asymptotics and Special Functions (1974) Academic Press London.

    Google Scholar 

  12. K. Schulten, R.G. Gordon, Semiclassical analysis of 3-y and 6-y coefficients for quantum mechanical of angular momentum, JMP 16 (1975) 1971–1988.

    Article  MathSciNet  Google Scholar 

  13. G. Szegö, Orthogonal Polynomials, AMS Colloq. Pub. Vol. 23, 4th ed, Providence, RI (1978).

    Google Scholar 

  14. W. Van Assche, Asymptotics for Orthogonal Polynomial, Lectures Notes in Mathematics 1265 Springer-Verlag (1967) London.

    Google Scholar 

  15. W. Van Assche, J.S. Geronimo, Asymptotics for orthogonal polynomials with regularly varying recurrence coefficients, Rocky Mtn. J. Math. 19 (1989) 39–49.

    Article  MATH  Google Scholar 

  16. Z. Wang, R. Wong, Uniform asymptotic expansion of Jυ (υa) via a difference equation, Numer. Math. 91 (2002) 147–193.

    Article  MathSciNet  MATH  Google Scholar 

  17. G.N. Watson, A treatise on the theory of Bessel functions (2nd ed), Cambridge Univ. Press (1944) London.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Geronimo, J.S., Bruno, O., Van Assche, W. (2004). WKB and Turning Point Theory for Second-order Difference Equations. In: Janas, J., Kurasov, P., Naboko, S. (eds) Spectral Methods for Operators of Mathematical Physics. Operator Theory: Advances and Applications, vol 154. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7947-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7947-7_7

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9632-0

  • Online ISBN: 978-3-0348-7947-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics