Skip to main content

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 147))

Abstract

We formulate three-dimensional interface crack problems in terms of Signorini conditions. With the help of potential theory we reduce these to variational inequalities which are employed on the two-dimensional boundary of a domain occupied by two homogeneous elastic anisotropic bodies. For the boundary variational inequalities, we prove uniqueness and existence. For a corresponding boundary element Galerkin approximation we also show convergence and asymptotic error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bach, M., Nazarov, S.A. and Wendland, W.L., Stable propagation of a mode-1 planar crack in an isotropic elastic space. Comparison of the Irwin and the Griffith approaches. In: Problemi Attuali dell’Analisi e della Fisica Matematica (P.E. Ricci ed.) MM, ARACNE EDITRICE, Roma 2000, 167–189.

    Google Scholar 

  2. Comninou, M. and Dundurs, J., On the behavior of interface crack, Res Mechanica, 1 (1980), 249–264.

    Google Scholar 

  3. Costabel, M., Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal., 19(1988), 613–626.

    MathSciNet  MATH  Google Scholar 

  4. Costabel, M. and Wendland, W.L., Strong ellipticity of boundary integral operators. J. Reine Angew. Mathematik 372 (1986), 34–63.

    MathSciNet  MATH  Google Scholar 

  5. Dahlberg, B.E.J., Kenig, C.E. and Verchota, G.C., Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J., 57 (1988), 795–818.

    MathSciNet  MATH  Google Scholar 

  6. Dautray, R. and Lions, J.L., Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 4, Integral Equations and Numerical Methods, Springer-Verlag, Berlin—Heidelberg, 1990.

    Book  Google Scholar 

  7. Duduchava, R., Natroshvili, D. and Shargorodsky, E., Basic boundary value problems of thermoelasticity for anisotropic bodies with cuts. I, II, Georgian Mathematical Journal, 2 (1995), No. 2, 123–140, No. 3, 259–276.

    Google Scholar 

  8. Duvaut, G. and Lions, J.L., Les inéquations en méchanique et en physique, Dunod, Paris, 1972.

    Google Scholar 

  9. Eck, C., Existenz und Regularität der Lösungen für Kontaktprobleme mit Reibung. Doctoral Thesis, University of Stuttgart 1996.

    Google Scholar 

  10. Eck, C., Steinbach, O. and Wendland, W.L., A symmetric boundary element method for contact problems with friction, Math. Comp. Simulation, 50 (1999), 1–4, 43–61.

    Google Scholar 

  11. Eck, C. and Wendland, W.L., A residual-based error estimator for BEM-discretizations of contact problems. Numer. Math., to appear.

    Google Scholar 

  12. Eck, C. and Wohlmuth, B., Convergence of a contact-Neumann iteration for the solution of two-body contact problems. Math. Models & Methods Appl. Sci. (2003), to appear.

    Google Scholar 

  13. Eskin, G., Boundary Value Problems for Elliptic Pseudodifferential Equations, Transl. of Mathem. Monographs, Amer. Math. Soc., 52 Providence, Rhode Island, 1981.

    Google Scholar 

  14. Fichera, G., Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambigue condicioni al contorno. Accad. Naz. Lincei, 8 (1963–1964), 91–140.

    Google Scholar 

  15. Fichera, G., Existence Theorems in Elasticity. Handb. der Physik, Bd. 6/2, Springer-Verlag, Heidelberg, 1973.

    Google Scholar 

  16. Gachechiladze, A. and Natroshvili, D., Boundary variational inequality approach in the anisotropic elasticity for the Signorini problem, Georgian Math. J., 8 (2001), 462–692.

    MathSciNet  Google Scholar 

  17. Glowinski, R., Lions, J.L. and Tremolieres R., Numerical Analysis of Variational Inequalities, North-Holland, Amsterdam, 1981.

    MATH  Google Scholar 

  18. Han, H., A boundary element procedure for the Signorini problem in three-dimensional elasticity. Numerical Mathematics, A Journal of Chinese Universities, 3 (1994), 104–117.

    MATH  Google Scholar 

  19. Hlaváèek, I., Haslinger, J., Neèas, J. and Lovièek, J., Solution of Variational Inequalities in Mechanics. SNTL, Prague, 1983.

    Google Scholar 

  20. Hsiao, G.C., Schnack, E. and Wendland, W.L., Hybrid coupled finite-boundary element methods for elliptic systems of second order. Comp. Methods Appl. Mech. Engrg., 190 (2000), 431–485.

    Google Scholar 

  21. Hsiao, G.C. and Wendland, W.L., A finite element method for some integral equations of the first kind. J. Math. Anal. Appl., 58 (1977), 449–481.

    Article  MathSciNet  MATH  Google Scholar 

  22. Hsiao, G.C. and Wendland, W.L., Boundary Integral Equations: Variational Methods. Springer-Verlag, Berlin, in preparation.

    Google Scholar 

  23. Kinderlehrer, D., Remarks about Signorini’s problem in linear elasticity, Ann. Sc. Norm. Sup. Pisa, Cl. Sci., S. IV, vol. VIII, 4 (1981), 605–645.

    MathSciNet  Google Scholar 

  24. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O. and Burchuladze, T.V., Three-dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, (Russian), Nauka, Moscow, 1976 (English translation: North-Holland Publishing Company, Amsterdam-New York-Oxford, 1979.

    Google Scholar 

  25. Lions, J.-L. and Magenes, E., Problèmes aux limites non homogènes et applications, Vol. 1, Dunod, Paris, 1968.

    MATH  Google Scholar 

  26. Lions, J.L. and Stampacchia, G., Variational inequalities, Comm Pure Appl. Math., 20 (1976), 493–519.

    MathSciNet  Google Scholar 

  27. Maz’ya, V.G., Boundary integral equations, in R.V. Gamkrelidze (ed.) Encyclopedia of Mathematical Sciences, 27, Springer-Verlag, Heidelberg, 1991.

    Google Scholar 

  28. McLean, W., Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, 2000.

    Google Scholar 

  29. Meister, E. and Speck, F.-O., The explicit solution of elastodynamic diffraction problems by symbol factorization. Z. Anal. Anw., 8 (1989), 307–328.

    Google Scholar 

  30. Natroshvili, D., Boundary integral equation method in the steady state oscillation problems for anisotropic bodies, Math. Methods Appl. Sci., 20 (1997), 95–119.

    Article  MathSciNet  MATH  Google Scholar 

  31. Natroshvili, D., Chkadua, O. and Shargorodsky, E., Mixed boundary value problems of the anisotropie elasticity, Proc. I. Vekua Inst. Appl. Math. Tbilisi State University, 39 (1990), 133–181 (Russian).

    MATH  Google Scholar 

  32. Neèas, J., Méthodes Directes en Théorie des Équations Élliptique, Masson, Paris, 1967.

    Google Scholar 

  33. Steinbach, O., Stability Estimates for Hybrid Coupled Domain Decomposition Methods. Lecture Notes in Math., Springer-Verlag, Berlin, 2003.

    Book  Google Scholar 

  34. Steinbach, O. and Wendland, W.L., On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl., 262 (2001), 733–748.

    Article  MathSciNet  MATH  Google Scholar 

  35. Triebel, H., Theory of Function Spaces, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983.

    Book  Google Scholar 

  36. Zeidler, E., Nonlinear Functional Analysis and its Applications. Vol.II/B, Nonlinear Monotone Operators. Springer-Verlag, New York, 1990.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Natroshvili, D., Wendland, W.L. (2004). Boundary Variational Inequalities in the Theory of Interface Cracks. In: Gohberg, I., Wendland, W., Ferreira dos Santos, A., Speck, FO., Teixeira, F.S. (eds) Operator Theoretical Methods and Applications to Mathematical Physics. Operator Theory: Advances and Applications, vol 147. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7926-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7926-2_36

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9623-8

  • Online ISBN: 978-3-0348-7926-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics