Skip to main content

Linearized stability for nonlinear evolution equations

  • Chapter
Nonlinear Evolution Equations and Related Topics
  • 847 Accesses

Abstract

We present a general principle of linearized stability at an equilibrium point for the Cauchy problem \( \dot{u}(t) + Au(t) \ni 0,t \geqslant 0,u(0) = u0 \) for an ω-accretive, possibly multivalued, operator A ⊂ Xx X in a Banach space X that has a linear ‘resolvent-derivative’ Ã ⊂ X x X. The result is applied to derive linearized stability results for the case of A = (B + G) under ‘minimal’ differentiability assumptions on the operators BX x X and G: cl D(B) → at the equilibrium point, as well as for partial differential delay equations.

To the memory of Philippe Bénilan

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] Bénilan, P., Crandall, M. G. and PAZY, A.Evolution Equations Governed by Accretive Operators.Monograph, in preparation.

    Google Scholar 

  2. Desch, W. and Schappacher, W.Linearized stability for nonlinear semigroups.In: Differential Equations in Banach Spaces (A. Favini and E. Obrecht, Eds.), 61–73, Lecture Notes in Math. vol. 1223, Springer, New York, 1986.

    Google Scholar 

  3. KATO, N.A principle of linearized stability for nonlinear evolution equationsTrans. Amer. Math. Soc.347(1995)2851–2868.

    Article  MATH  Google Scholar 

  4. Mtyadera, I., Nonlinear Semigroups, Transi. of Math. Monographs 109, Amer. Math. Soc. Providence, RI, 1992.

    Google Scholar 

  5. Pierre, M.Perturbations localement Lipschitziennes et continues d’opérateurs m-accrétifsProc. Amer. Math. Soc.58(1976), 124–128.

    MathSciNet  MATH  Google Scholar 

  6. Rauch, J., Stability of motion for semilinear equations. In: Boundary Value Problems for Linear Evolution Partial Differential Equations (H.G. Garnir, Ed.), 319–349, D. Reidel Publ. Comp. Dordrecht, 1977.

    Google Scholar 

  7. Ruess, W. M.Existence and stability of solutions to partial functional differential equations with delayAdv. Diff. Eqns. 4 (1999), 843–876.

    MathSciNet  MATH  Google Scholar 

  8. Ruess, W. M. and Summers, W. H.Linearized stability for abstract differential equations with delayJ. Math. Anal. Appt.198(1996), 310–336.

    Article  MathSciNet  MATH  Google Scholar 

  9. Smoller, J.Shock Waves and Reaction-Diffusion EquationsGrundlehren Math. Wiss. 258, Springer, New York, 1983.

    Google Scholar 

  10. Webb, G.F.Theory of nonlinear age-dependent population dynamics, Marcel-Dekker, New York, 1985. [11] ZEIDLER, E., Nonlinear Functional Analysis and Applicationsvol. I, Springer, New York, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this chapter

Cite this chapter

Ruess, W.M. (2003). Linearized stability for nonlinear evolution equations. In: Arendt, W., Brézis, H., Pierre, M. (eds) Nonlinear Evolution Equations and Related Topics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7924-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7924-8_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-7107-4

  • Online ISBN: 978-3-0348-7924-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics