Skip to main content

On the Local Behavior of Ordinary Modular Galois Representations

  • Chapter
Modular Curves and Abelian Varieties

Part of the book series: Progress in Mathematics ((PM,volume 224))

Abstract

We show that if the restriction to the decomposition group at p of the p-adic Galois representation attached to one member of a Hida family of elliptic modular cusp forms is non-split then it is non-split for all but finitely many members of this family. We explain the relevance of this result to a question of Greenberg on the local splitting behavior of ordinary modular Galois representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Breuil. p-adic Hodge theory, Deformations and Local Langlands. CRM Barcelona Lecture Notes, 2001.

    Google Scholar 

  2. R. Coleman and J. F. Voloch. Companion forms and Kodaira-Spencer theory. Invent. Math., 110(2):263–281, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. In Modular functions of one variable, II (Proc. Internat. Summer School,Univ. Antwerp, Antwerp, 1972), volume 349 of Lecture Notes in Math., pages 143–316. Springer, Berlin, 1973.

    Chapter  Google Scholar 

  4. []M. Emerton. A p-adic variational Hodge conjecture and modular forms with complex multiplication. Preprint.

    Google Scholar 

  5. [] E. Ghate and V. Vatsal. On the local behaviour of ordinary A-adic representations. To appear.

    Google Scholar 

  6. F. Gouvêa. Non-ordinary primes: a story. Experiment. Math., 6(3):195–205, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Greenberg. Introduction to Iwasawa theory of elliptic curves. IAS/Park City Mathematics Institute Lecture Notes, 1999.

    Google Scholar 

  8. B. Gross. A tameness criterion for Galois representations associated to modular forms (mod p). Duke. Math. J., 61(2):445–517, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Hida. Iwasawa modules attached to congruences of cusp forms. Ann. Sci. École Norm. Sup., 19(2):231–273, 1986.

    MathSciNet  MATH  Google Scholar 

  10. H. Hida. Galois representations into GL2(Z,[[X]]) attached to ordinary cusp forms. Invent. Math., 85:545–613, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Langlands. Modular forms and e-adic representations. In Modular functions of one variable, II (Proc. Internat. Summer School,Univ. Antwerp, Antwerp, 1972), volume 349 of Lecture Notes in Math., pages 361–500. Springer, Berlin, 1973.

    Chapter  Google Scholar 

  12. B. Mazur and A. Wiles. On p-adic analytic families of Galois representations. Cornpositio Math., 59:231–264, 1986.

    MathSciNet  MATH  Google Scholar 

  13. K. Ribet. Galois action on division points of Abelian varieties with real multiplications. Amer. J. Math., 98(3):751–804, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  14. J.-P. Serre. Abelian 1-adic representations and elliptic curves. Second edition. Advanced Book Classics. Addison-Wesley Publishing Company, Redwood City, CA, 1989.

    Google Scholar 

  15. J.-P. Serre and J. Tate. Good reduction of abelian varieties. Ann. of Math, 88:492–517, 1968.

    Google Scholar 

  16. G. Shimura. Introduction to the arithmetic theory of automorphic functions. Princeton Univ. Press, Princeton, 1971.

    MATH  Google Scholar 

  17. G. Shimura. On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields. Ngoya Math. J., 43:199–208, 1971.

    MathSciNet  MATH  Google Scholar 

  18. G. Shimura. Class fields over real quadratic fields and Hecke operators. Ann. of Math, 95(2):130–190, 1972.

    Google Scholar 

  19. J. Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen,1966), pages 158–183. Springer, Berlin, 1967.

    Google Scholar 

  20. A. Wiles. On ordinary À-adic representations associated to modular forms. Inv. Math., 94(3):529–573, 1988.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Ghate, E. (2004). On the Local Behavior of Ordinary Modular Galois Representations. In: Cremona, J.E., Lario, JC., Quer, J., Ribet, K.A. (eds) Modular Curves and Abelian Varieties. Progress in Mathematics, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7919-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7919-4_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9621-4

  • Online ISBN: 978-3-0348-7919-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics