Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 224))

Abstract

For any field K, a “K-curve” is an elliptic curve E defined over some finite separable extension of K such that every Galois conjugate of E is isogenous with E over a separable closure of K. A K-curve must either have complex multiplication (CM) or be isogenous to a collection of K-curves parametrized by a K-rational point on some modular curve X* (N). We give the first proof of this result, obtained in 1993 but not heretofore published. We also indicate some of the reasons for interest in K-curves, and in particular in Q-curves, and give some computational examples and open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovic, D.: Subvarieties of Abelian Varieties and of Jacobians of Curves. Ph. D. thesis, Harvard 1991.

    Google Scholar 

  2. Abramovic, D., Harris, J.: Abelian varieties and curves in Wd(C). Compositio Math. 78 (1991) #2, 227–238.

    Google Scholar 

  3. Birch, B.J., Kuyk, W., ed.: Modular Functions of One Variable IV. Berlin: Springer 1975 (LNM 476).

    Google Scholar 

  4. Chabauty, C.: Sur les points rationnels des variétés algébriques de genre supérieur à l’unité. C. R. Acad. Sci. Paris 212 (1941), 882–885.

    Google Scholar 

  5. Elkies, N.D.: The existence of infinitely many supersingular primes for every el­liptic curve over Q, Invent. Math. 89 (1987) #3, 561–568.

    Google Scholar 

  6. Elkies, N.D.: Supersingular primes for elliptic curves over real number fields, Com­positio Math. 72 (1989) #2, 165–172.

    Google Scholar 

  7. Elkies, N.D.: The automorphism group of the modular curve Xo(63), Compositio Math. 74 (1990) #2, 203–208.

    Google Scholar 

  8. Elkies, N.D.: Remarks on elliptic K-curves. Preprint, 1993.

    Google Scholar 

  9. Elkies, N.D.: Elliptic and modular curves over finite fields and related compu­tational issues. Pages 21–76 in Computational Perspectives on Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin (D.A. Buell and J.T. Teit­elbaum, eds.; Providence: American Mathematical Society, 1998).

    Google Scholar 

  10. Ellenberg, J.S.: Galois representations attached to Q-curves and the generalized Fermat equation A4 + B2 = CP. Amer. J. Math., to appear.

    Google Scholar 

  11. Ellenberg, J.S., Skinner, C.: On the modularity of Q-curves. Duke Math. J. 109 (2001) #1, 97–122.

    Google Scholar 

  12. Faltings, G.: Diophantine approximation on abelian varieties. Ann. of Math. (2) 133 (1991) #3, 549–576.

    Google Scholar 

  13. Flynn, V.E.: Coverings of curves of genus 2. Pages 65–84 in Algorithmic Number Theory (Leiden, 2000) (Proceedings of ANTS-IV, W. Bosma, ed.), Berlin: Springer 2000 Lect. Notes in Computer Sci. 1838.

    Google Scholar 

  14. Galbraith,S.G.: Rational points on.X,-(p).Experimental Math. 8 (1999) #4, 311­318.

    Google Scholar 

  15. Galbraith, S.G.: Rational points on X,- RN) and quadratic Q-curves. J. Th. des Nombres de Bordeaux 14 (2002) #1, 205–219.

    Google Scholar 

  16. González, J., Lario, J.-C.: Rational and Elliptic Parametrizations of Q-curves. J. Number Theory 72 (1998), 13–31.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gross, B.H.: Arithmetic on elliptic curves with complex multiplication. Berlin: Springer 1980 (LNM 776).

    Google Scholar 

  18. Jao, D.: Supersingular primes for rational points on modular curves. Ph. D. thesis, Harvard 2003.

    Google Scholar 

  19. Mazur, B., Swinnerton-Dyer, H.P.F.: Arithmetic of Weil curves, Invent. Math. 25 (1974), 1–61.

    Article  MathSciNet  MATH  Google Scholar 

  20. Momose, F.: Rational points on the modular curves Xsp t (p). Compositio Math. 52 (1984) #1, 115–137.

    Google Scholar 

  21. Momose, F.: Rational points on the modular curves Xó (pr). J. Fac. Sci. Univ. Tokyo, Sect. IA Math. 33 (1986) #3, 441–466.

    Google Scholar 

  22. Momose, F.: Rational points on the modular curves Xó (N). J. Math. Soc. Japan 39 (1987) #2, 269–286.

    Google Scholar 

  23. Ribet, K.A.: Abelian varieties over Q and modular forms. CPAM preprint, Berke­ley 9/92. Also pages 53–79 in 1992 Proceedings of KAIST Mathematics Workshop (Taejon: Korea Advanced Institute of Science and Technology).

    Google Scholar 

  24. Ribet, K.A.: Fields of definition of abelian varieties with real multiplication. Pages 107–118 in Arithmetic geometry (Tempe, AZ, 1993; N. Childress and J.W. Jones, eds. = Contemp. Math. 174, Amer. Math. Soc., Providence, RI, 1994).

    Google Scholar 

  25. Serre, J.P.: Répresentations l-adiques. Pages 177–193 in Algebraic number theory: papers contributed for the Kyoto International Symposium (S. Iyanaga, ed.), Tokyo: Japan Society for the Promotion of Science, 1977. [_ #112 (pages 384–400) in OEuvres III (Springer: Berlin 1986).]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Elkies, N.D. (2004). On Elliptic K-curves. In: Cremona, J.E., Lario, JC., Quer, J., Ribet, K.A. (eds) Modular Curves and Abelian Varieties. Progress in Mathematics, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7919-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7919-4_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9621-4

  • Online ISBN: 978-3-0348-7919-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics