Skip to main content

Abelian Varieties over Q and Modular Forms

  • Chapter
Modular Curves and Abelian Varieties

Part of the book series: Progress in Mathematics ((PM,volume 224))

Abstract

Let C be an elliptic curve over Q. Let N be the conductor of C. The Taniyama conjecture asserts that there is a non-constant map of algebraic curves X 0 (N) — C which is defined over Q. Here, X o (N) is the standard modular curve associated with the problem of classifying elliptic curves E together with cyclic subgroups of E having order N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Birch and W. Kuyk, eds., Modular functions of one variable IV, Lecture Notes in Math., vol. 476, Springer-Verlag, Berlin and New York, 1975.

    Google Scholar 

  2. J. Buhler and B.H. Gross, Arithmetic on elliptic curves with complex multiplication. II, Invent. Math 79 (1985), 11–29.

    MATH  MathSciNet  Google Scholar 

  3. W. Chi, Twists of central simple algebras and endomorphism algebras of some abelian varieties Math. Ann. 276 (1987), 615–632.

    Article  MATH  MathSciNet  Google Scholar 

  4. P. Deligne, Valeurs de fonctions L et périodes d’intégrales, Proceedings of Symposia in Pure Mathematics 33 (1979), (2) 313–346.

    Article  MathSciNet  Google Scholar 

  5. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Faltings, G. Wüstholz et. al., Rational points, F. Vieweg & Sohn, Braunschweig-Wiesbaden, 1984.

    Google Scholar 

  7. B.H. Gross, Springer-Verlag, Berlin and New York, 1980.

    Google Scholar 

  8. A. Grothendieck, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Math., vol. 776k, SGA7 I, Exposé IX, Lecture Notes in Math., vol. 288, Springer-Verlag, Berlin and New York, 1972, pp. 313–523.

    Google Scholar 

  9. H. Hida, On abelian varieties with complex multiplication as factors of the Jacobi ans of Shimura curves, Am. J. Math. 103 (1981), 727–776.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Koike, On certain abelian varieties obtained from new forms of weight 2 on ro (34) and F0(35), Nagoya Math. J. 62 (1976), 29–39.

    MATH  MathSciNet  Google Scholar 

  11. D.J. Lorenzini, On the jacobian of the modular curve Xo(N), to appear.

    Google Scholar 

  12. B. Mazur, Number theory as gadfly, Am. Math. Monthly 98 (1991) 593–610.

    Article  MATH  MathSciNet  Google Scholar 

  13. J.S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972) 177–190.

    MATH  MathSciNet  Google Scholar 

  14. D. Mumford, Abelian varieties, Second edition, Oxford University Press, London, 1974.

    Google Scholar 

  15. A. Ogg, Elliptic curves and wild ramification, Am. J. Math. 89 (1967), 1–21.

    Article  MATH  MathSciNet  Google Scholar 

  16. K.A. Ribet, Endomorphisms of semi-stable abelian varieties over number fields, Annals of Math. 101 (1975), 555–562.

    Article  MATH  MathSciNet  Google Scholar 

  17. K.A. Ribet, Galois action on division points on abelian varieties with many real multi-plications, Am. J. Math. 98 (1976), 751–804.

    Article  MATH  MathSciNet  Google Scholar 

  18. K.A. Ribet, The Q-adic representations attached to an eigenform with Nebentypus: a survey, Lecture Notes in Math., vol. 601, Springer-Verlag, Berlin and New York, 1977, pp. 17–52.

    Google Scholar 

  19. K.A. Ribet, Twists of modular forms and endomorphisms of abelian varieties Math. Ann. 253 (1980), 43–62.

    Article  MATH  MathSciNet  Google Scholar 

  20. K.A. Ribet, Endomorphism algebras of Abelian varieties attached to newforms of weight 2, Progress in Math. 12 (1981), 263–276.

    MathSciNet  Google Scholar 

  21. J.-P. Serre, Abelian $-adic representations and elliptic curves, Addison-Wesley Publ. Co., Redding, Mass., 1989.

    Google Scholar 

  22. J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.

    Article  MATH  MathSciNet  Google Scholar 

  23. J.-P. Serre, Modular forms of weight one and Galois representations, prepared in col-laboration with C. J. Bushnell, Algebraic number fields (L-functions and Galois properties), A. Fröhlich, ed., Academic Press, London, New York and San Francisco, 1977, pp. 193–268.

    Google Scholar 

  24. J.-P. Serre, Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54 (1987), 179–230.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Shimura, Algebraic number fields and symplectic discontinuous groups, Ann. of Math. 86 (1967), 503–592.

    Article  MATH  MathSciNet  Google Scholar 

  26. G. Shimura, On elliptic curves with complex multiplication as factors of the Jacobi ans of modular function fields, Nagoya Math. J. 43 (1971), 199–208.

    MATH  MathSciNet  Google Scholar 

  27. G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, Princeton, 1971.

    MATH  Google Scholar 

  28. G. Shimura, Class fields over real quadratic fields and Hecke operators, Ann. of Math. 95 (1972), 131–190.

    Article  MathSciNet  Google Scholar 

  29. G. Shimura, On the factors of the Jacobian variety of a modular function field, J. Math. Soc. Japan 25 (1973), 523–544.

    MATH  MathSciNet  Google Scholar 

  30. G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135–164.

    Article  MATH  MathSciNet  Google Scholar 

  31. G. Shimura and Y. Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Second printing corrected, Math. Society of Japan, Tokyo, 1975.

    Google Scholar 

  32. A. Weil, The field of definition of a variety, Am. J. Math 78 (1956), 509–524.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Weil, Adeles and algebraic groups, Progress in Math., vol. 23, Birkhäuser, Boston and Basel, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Ribet, K.A. (2004). Abelian Varieties over Q and Modular Forms. In: Cremona, J.E., Lario, JC., Quer, J., Ribet, K.A. (eds) Modular Curves and Abelian Varieties. Progress in Mathematics, vol 224. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7919-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7919-4_15

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9621-4

  • Online ISBN: 978-3-0348-7919-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics