Skip to main content

Divisor Functions and Pentagonal Numbers

  • Conference paper
Mathematics and Computer Science III

Part of the book series: Trends in Mathematics ((TM))

  • 595 Accesses

Abstract

Let p(n, ni) be the number of partitions of n with at most m summands1, \( \omega \left( n \right) = \frac{1}{2}\left( {3{n^2} - n} \right),n \in \mathbb{Z}\) be the pentagonal numbers2 and \( {\sigma _j}\left( n \right) = \sum\nolimits_{d\left| n \right.} {{d^j}},j \in \mathbb{N},\) be the divisor functions. Then σ(n) – the number of the divisors of n – satisfies

$$ {\sigma _0}\left( n \right) = g\left( {n,0} \right) + g\left( {n,1} \right) +, \ldots, + g\left( {n,n - 1} \right) $$
(1)

Where

$$ g\left( {n,m} \right) = p\left( {n,m} \right) - \sum\limits_{i = 1}^\infty {{{\left( { - 1} \right)}^{i - 1}}} \left( {p\left( {n - \omega \left( i \right),m} \right) + p\left( {n - \omega \left( { - i} \right),m} \right)} \right). $$

Pentagonal numbers are given by a well-known identity due to Euler

$$ {\left( q \right)_\infty }\mathop = \limits^{def} \prod\limits_{n = 1}^\infty {\left( {1 - {q^n}} \right)} = \sum\limits_{n = - \infty }^\infty {{{\left( { - 1} \right)}^n}} {q^{n\left( {3n - 1} \right)/2}}.$$
(2)

They are correlated with the number of partition p(n) of \( n \in \mathbb{N},\) generated by

$$\sum\limits_{{n = 0}}^{\infty } {p\left( n \right)} {{q}^{n}} = \frac{1}{{{{{\left( q \right)}}_{\infty }}}}, $$
(3)

through the identity

$$ 1 = \frac{{{{\left( q \right)}_\infty }}}{{{{\left( q \right)}_\infty }}} = \left( {1 - {q^1} - {q^2} + {q^5} + {q^7} - \cdot \cdot \cdot } \right) \cdot \left( {p\left( 0 \right){q^0} + p\left( 1 \right){q^1} + \cdot \cdot \cdot } \right) $$

or equivalently

$$ 0 = p\left( n \right) - \sum\limits_{j = 1}^\infty {{{\left( { - 1} \right)}^{j - 1}}} \left( {p\left( {n - \omega \left( j \right)} \right) + p\left( {n - \omega \left( { - j} \right)} \right)} \right).$$
(4)

On the other hand, the pentagonal numbers are connected with the divisor function σ 1 (n), for instance, by3

$$ {\sigma _1}\left( n \right) = {\sum\limits_{i = 1}^\infty {\left( { - 1} \right)} ^{i - 1}}\left( {\omega \left( i \right)p\left( {n - \omega \left( i \right)} \right) + \omega \left( { - i} \right)p\left( {n - \omega \left( { - i} \right)} \right)} \right). $$

Our statement (1) is a similar identity for ao(n). By way of illustration, for n = 5 we obtain \( \mathop {\lim }\limits_{x \to \infty } \left( {n - {a_n}} \right) = \sum\limits_{i = 1}^\infty {{\sigma _0}} \left( i \right){q^i}\) where the sequence an is defined by a0 = 0 and

$$ {a_n} = 1 + \left( {1 - {q^{n - 1}}} \right){a_{n - 1}}.$$
(6)

Iterating the recurrence leads to

$$ {a_n} = \prod\limits_{i = 1}^{n - 1} {\left( {1 - {q^i}} \right)} \sum\limits_{j = 0}^{n - 1} {\frac{1}{{\left( {1 - q} \right) \ldots \left( {1 - {q^j}} \right).}}}$$
(7)

Now, theroduct \( {\left( {\left( {1 - q} \right) \ldots \left( {1 - {q^m}} \right)} \right)^{ - 1}}\mathop = \limits^{def} \left( q \right)_m^{ - 1}\) is well-known as generating function of the numbers p(n, m), hence

$$ \sum\limits_{n = 0}^\infty {p\left( {n,m} \right){q^n}} = \frac{1}{{\left( {1 - q} \right)\left( {1 - {q^2}} \right) \ldots \left( {1 - {q^m}} \right)}},m \geqslant 0. $$
(8)

With (8) the equation (7) can be written as

$${{a}_{n}} = \sum\limits_{{m = 0}}^{{n - 1}} {\underbrace{{{{{\left( q \right)}}_{{n - 1}}}\sum\limits_{{h = 0}}^{\infty } {p\left( {h,m} \right){{q}^{h}}.} }}_{{\mathop{ = }\limits^{{def}} {{H}_{{n,m}}}\left( q \right)}}} $$
(9)

For \( \sum\limits_{n = 0}^\infty {g\left( {n,m} \right){q^n}} = \mathop {\lim }\limits_{x \to \infty } {H_{n,m}}\left( q \right)\mathop = \limits^{\left( 2 \right)} \sum\limits_{i = - \infty }^\infty {{{\left( { - 1} \right)}^i}{q^{i\left( {3i - 1} \right)/2}}} \sum\limits_{j = 0}^\infty {p\left( {j,m} \right){q^j}}\) with g(0, m) = 1 and

$$ \begin{gathered} g\left( {n,m} \right) = p\left( {n,m} \right) - p\left( {n - 1,m} \right) - p\left( {n - 2,m} \right) + p\left( {n - 5,m} \right) + \cdots ,m \geqslant 1. \hfill \\ \hfill \\ \end{gathered} $$

Note that p(n, m) = p(n), for m ≥ n. This implies \( g\left( {n,m} \right)\mathop = \limits^{\left( 4 \right)} 0,form \geqslant n \geqslant 1.\) Therefore

$$ \mathop {\lim }\limits_{n \to \infty } (n - a_n ) = \sum\limits_{j = 1}^\infty {\left( {g\left( {j,0} \right) + \cdots + g\left( {j,j - 1} \right)} \right)q^j } $$

which, together with (5), completes the proof of (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Simon, K. (2004). Divisor Functions and Pentagonal Numbers. In: Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds) Mathematics and Computer Science III. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7915-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7915-6_8

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9620-7

  • Online ISBN: 978-3-0348-7915-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics