Skip to main content

Dual Random Fragmentation and Coagulation and an Application to the Genealogy of Yule Processes

  • Conference paper
Mathematics and Computer Science III

Part of the book series: Trends in Mathematics ((TM))

Abstract

The purpose of this work is to describe a duality betweena fragmentationassociated to certain Dirichlet distributions and a natural randomcoagulation. The dualfragmentation and coalescent chains arising in this settingappear in thedescription of the genealogy of Yule processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Athreya, K.B. and Ney, P.E. (1972).Branching processes.Springer-Verlag, BerlinHeidelberg-New York

    Book  MATH  Google Scholar 

  2. Bertoin, J. (2002). Self-similar fragmentations. Ann.Inst. Henri Poincaré38, 319–340

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertoin, J. (2003). Random covering of an interval and a variation of Kingman’s coalescent. To appear inRandom Structures Algorithms. Also available as Preprint PMA-794 at http://www.probe.jussieu.fr/mathdoc/preprints/index.html

    Google Scholar 

  4. Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes.Probab. Theory Relat. Fields117, 249–266

    Article  MATH  Google Scholar 

  5. Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes.Probab. Theory Relat. Fields126, 261–288

    Article  MATH  Google Scholar 

  6. Bertoin, J. and Pitman, J. (2000). Two coalescents derived from the ranges of stable subordinators.Elect. J. Probab.5, 1–17. Available via http://www.math.u-psud.fr/ejpecp/ejp5contents.html

    MathSciNet  Google Scholar 

  7. Bolthausen, E. and Sznitman, A.S. (1998). On Ruelle’s probability cascades and an abstract cavity method.Comm. Math. Physics197, 247–276

    Article  MathSciNet  MATH  Google Scholar 

  8. Duquesne, T. and Le Gall, J.-F. (2002).Random trees Lévy processes and spatial branching processes. Astérisque 281

    Google Scholar 

  9. Fleischmann, K. and Siegmund-Schultze, R. (1977) The structure of reduced critical Galton-Watson processes.Math. Nachr.79, 233–241

    Article  MathSciNet  Google Scholar 

  10. Grey, D. R. (1974). Asymptotic behaviour of continuous time, continuous state-space branching processes.J. Appl. Probab.11, 669–677

    Article  MathSciNet  MATH  Google Scholar 

  11. Kallenberg, O. (1973). Canonical representations and convergence criteria for processes with interchangeable increments.Z. Wahrsch. verw. Gebiete27, 23–36

    Article  MathSciNet  MATH  Google Scholar 

  12. Kendall, D. G. (1966). Branching processes since 1873.J. London Math. Soc.41, 385–406

    Article  MathSciNet  MATH  Google Scholar 

  13. Kingman, J. F. C. (1982). The coalescent.Stochastic Process. Appl.13, 235–248

    Article  MathSciNet  MATH  Google Scholar 

  14. Lamperti, J. (1967). The limit of a sequence of branching processes.Z. Wahrsch. verw. Gebiete7, 271–288

    Article  MathSciNet  MATH  Google Scholar 

  15. Lamperti, J. (1967). Continuous-state branching processes.Bull. Amer. Math. Soc.73, 382–386

    Article  MathSciNet  MATH  Google Scholar 

  16. Le Gall, J.-F. (1989). Marches aléatoires, mouvement brownien et processus de branchement.Séminaire de Probabilités XXIIILecture Notes in Math., 1372, Springer, Berlin, 258–274

    Book  Google Scholar 

  17. Pitman, J. (1999). Coalescents with multiple collisions. Ann.Probab.27, 1870–1902

    Article  MathSciNet  MATH  Google Scholar 

  18. Pitman, J. (2002).Combinatorial Stochastic Processes. Lecture notes for the St Flour summer school. To appear. Available athttp://www.berkeley.edu/users/pitman/621.ps.Z

    Google Scholar 

  19. Pitman, J. and Yor, M. (1997). The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator.Ann. Probab.25, 855–900

    Article  MathSciNet  MATH  Google Scholar 

  20. Revuz, D. and Yor, M. (1999).Continuous martingales and Brownian motionThird edition. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Bertoin, J., Goldschmidt, C. (2004). Dual Random Fragmentation and Coagulation and an Application to the Genealogy of Yule Processes. In: Drmota, M., Flajolet, P., Gardy, D., Gittenberger, B. (eds) Mathematics and Computer Science III. Trends in Mathematics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7915-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7915-6_31

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9620-7

  • Online ISBN: 978-3-0348-7915-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics