Skip to main content

Dynamical Response of Quasi 1D Mott Insulators

  • Conference paper
International Conference on Theoretical Physics

Abstract

At low energies certain one dimensional Mott insulators can be described in terms of an exactly solvable quantum field theory, the U(1) Thirring model. Using exact results derived from integrability we determine dynamical properties like the frequency dependent optical conductivity and the single-particle Green’s function. We discuss the effects of a small temperature and the effects on interchain tunneling in a model of infinitely many weakly coupled chains.

Article Note

More precisely, these compounds are considered to be charge-transfer insulators

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. F. MottMetal-Insulator Transitions2“ded., Taylor and Francis, London (1990); F. GebhardThe Mott Metal-Insulator TransitionSpringer, Berlin (1997).

    Google Scholar 

  2. N. F. MottProc. Roy. Soc. A 62416 (1949);Canad. Jo. Phys. 341356 (1964);Phil. Mag. 6287 (1961).

    Google Scholar 

  3. A. Georges, G. Kotliar, W. Krauth and M.J. RozenbergRev. Mod. Phys. 6813 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Bourbonnais and D. Jerome, in “Advances in Synthetic Metals, Twenty years of Progress in Science and Technology”, ed. by P. Bernier, S. Lefrant and G. Bidan (Elsevier, New York, 1999), p. 206–301 and references therein. See also tond-mat - 9903101.

    Google Scholar 

  5. C. Kim, A.Y. Matsuura, Z.X. Shen, N. Montoyama, H. Eisaki, S. Uchida, T. Tohyama and S. MaekawaPhys. Rev. Lett. 774054(1996); H. Fujisawa et alPhys. Rev. B 597358 (1999); K. Kobayashi et. al.Phys. Rev. Lett. 82803 (1999);

    Google Scholar 

  6. T. Mizokawa et. al.Phys. Rev. Lett. 854779 (2000).

    Article  ADS  Google Scholar 

  7. S. Biermann, A. Georges, T. Giamarchi and A. Lichtenstein, Proceedings of the NATO ASI “Field Theory of Strongly Correlated Fermions and Bosons in Low - Dimensional Disordered Systems”, Windsor, August, 2001.

    Google Scholar 

  8. Bosonization in Strongly Correlated SystemsA. O. Gogolin, A. A. Nersesyan and A. M. Tsvelik, Cambridge University Press (1999).

    Google Scholar 

  9. T. GiamarchiPhysica B230–232975 (1997).

    Article  Google Scholar 

  10. H. Yoshioka, M. Tsuchizu and Y. SuzumuraJ. Phys. Soc. Jpn 70762 (2001).

    Article  ADS  Google Scholar 

  11. M. NakamuraPhys. Rev. B6116377 (2000).

    Article  Google Scholar 

  12. F.A. SmirnovForm Factors in Completely Integrable Models ofQuantumField Theory(World Scientific, Singapore, 1992).

    Book  MATH  Google Scholar 

  13. M. Karowski and P. Weisz. Phys. B139455 (1978); H. Babujian, A. Fring, M. Karowski and A. ZapletalNucl. Phys. B538535 (1999); A. Fring, G. Mussardo and P. SimonettiNucl. Phys. B393413 (1993); S. LukyanovComm. Math. Phys. 167183 (1995); S. LukyanovMod. Phys. Lett. Al22911 (1997).

    Google Scholar 

  14. A.B. ZamolodchikovJETP Lett. 25468 (1977); H.-J. Thun, T.T. Truong, P.H. WeiszPhys. Lett. B67321 (1977).

    Google Scholar 

  15. J. Cardy and G. MussardoNucl. Phys. B410451 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Mussardo, preprint hep-th/940512.

    Google Scholar 

  17. E. Jeckelmann, F. Gebhard and F. H. L. EsslerPhys. Rev. Lett. 853910 (2000).

    Article  ADS  Google Scholar 

  18. D. Controzzi, F.H.L. Essler and A.M. TsvelikPhys. Rev. Lett. 86680 (2001).

    Article  ADS  Google Scholar 

  19. D. Controzzi, F.H.L. Essler and A.M. Tsvelik, in “New Theoretical Approaches to Strongly Correlated Systems”, ed A.M. Tsvelik, NATO Science SeriesIIVol 23, preprint cond-mat/0011439.

    Google Scholar 

  20. E. JeckelmannPhys. Rev.B 66045114 (2002).

    Article  ADS  Google Scholar 

  21. F.H.L. Essler, F. Gebhard and E. JeckelmannPhys. Rev. B 645119 (2001).

    Article  ADS  Google Scholar 

  22. E. JeckelmannPhys. Rev. B 67075106 (2003).

    Article  ADS  Google Scholar 

  23. A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, T. GiamarchiPhys. Rev. B 581261 (1998); V.Vescoli, L. Degiorgi, W. Henderson, G. Grüner, K. P. Starkey, L. K. MontgomeryScience 2811181 (1998); W. Henderson, V. Vescoli, P. Tran, L. Degiorgi and G. GrünerFur. Phys. J. B 11365 (1999).

    Google Scholar 

  24. M.G. Zacher, E. Arrigoni, W. Hanke and J.R. SchriefferPhys. Rev. B 576370 (1998); D. Senechal, D. Perez and M. Pioro-LadierePhys. Rev. Lett. 84522 (2000); R.N. Bannister and N. d’AmbrumenilPhys. Rev. B 614651 (2000).

    Google Scholar 

  25. A. Parola and S. SorellaPhys. Rev. B.576444 (1998); A. Parola and S. SorellaPhys. Rev. Lett. 764604 (1996); K. Penc, K. Hallberg, F. Mila and H. ShibaPhys. Rev. Lett. 771390 (1996).

    Google Scholar 

  26. P. B. WiegmannSoy. Sci. Rev. Ser. A vol.2p.41 (1980), Harwood Academic Publ., ed. I. M. Khalatnikov.

    Google Scholar 

  27. J. VoitEur. Phys. J. B5505 (1998).

    ADS  Google Scholar 

  28. O.A. Starykh, D.L. Maslov, W. Häusler, L.I. Glazman, inLow-Dimensional Systemsed. T. Brandes, Lecture Notes in Physics, Springer (2000)

    Google Scholar 

  29. F.H.L. Essler and A.M. TsvelikPhys. Rev.B 65115117 (2002).

    Article  Google Scholar 

  30. S. Lukyanov and A. B. ZamolodchikovNucl. Phys. B607437 (2001).

    Article  MathSciNet  ADS  Google Scholar 

  31. F.H.L. Essler and A.M. TsvelikPhys. Rev. Lett. 90126401 (2003).

    Article  ADS  Google Scholar 

  32. F.H.L. Essler and A.M. TsvelikPhys. Rev. Lett.88096403 (2002).

    Article  ADS  Google Scholar 

  33. A.A. Abrikosov, L.P. Gorkov and I.E. DzyaloshinskiMethods of Quantum Field Theory in Statistical PhysicsDover (New York) 1975, page 168.

    Google Scholar 

  34. X.G.’Wen, xx Phys. Rev. B426623 (1990); E. ArrigoniPhys. Rev. B 617909 (2000).

    Google Scholar 

  35. D. Boies, C. Bourbonnais and A.-M. S. TremblayPhys. Rev. Lett. 74968 (1995).

    Article  ADS  Google Scholar 

  36. D.J. Scalapino, Y. Imry and P. PincusPhys. Rev. B112042 (1975).

    ADS  Google Scholar 

  37. S. Biermann, T. Giamarchi, A. Georges and A. LichtensteinPhys. Rev. Lett.87276405 (2001).

    Article  ADS  Google Scholar 

  38. D. Controzzi and F.H.L. EsslerPhys. Rev.B 66165112 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Essler, F.H.L., Tsvelik, A.M. (2003). Dynamical Response of Quasi 1D Mott Insulators. In: Iagolnitzer, D., Rivasseau, V., Zinn-Justin, J. (eds) International Conference on Theoretical Physics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7907-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7907-1_45

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9618-4

  • Online ISBN: 978-3-0348-7907-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics