Skip to main content

Dimensional Reduction and Crossover to Mean-Field Behavior for Branched Polymers

  • Conference paper
International Conference on Theoretical Physics
  • 367 Accesses

Abstract

This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in[PS81]that branched polymers fall into the universality class of the Yang-Lee edge in two fewer dimensions. Brydges and I have proven in[BI01]that the generating function for self-avoiding branched polymers inD +2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity inDdimensions (which is in the Yang-Lee ori \(\phi ^3 \) class). I will describe how this equivalence arises from an underlying supersymmetry of the branched polymer model.

I will also use dimensional reduction to analyze the crossover of two-dimensional branched polymers to their mean-field limit, and to show that the scaling is given by an Airy function (the same as in[Car01]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Baxter, Exactly solved models in statistical mechanics, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1982.

    Google Scholar 

  2. C. Borgs, J. Chayes, R. van der Hofstad, and G. Slade, Mean-field lattice trees, Ann.Comb. 3205–221 (1999), arXiv:math.PR/9904184.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Brézin and C. De Dominicus, New phenomena in the random field Ising modelEurophys. Lett. 4413–19 (1998), arXiv:condmat/9804266.

    Article  ADS  Google Scholar 

  4. D.C. Brydges and J.Z. Imbrie, Branched polymers and dimensional reduction, preprint, arXiv:math-ph/0107005.

    Google Scholar 

  5. D.C. Brydges and J.Z. Imbrie, Dimensional reduction formulas for branched polymer correlation functionsJ. Statist. Phys. 110503–518 (2003), arXiv:math-ph/0203055.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Baram and M. Luban, Universality of the cluster integrals of repul-sive systemsPhys. Rev. A 36760–765 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  7. D. C. Brydges and J. Wright, Mayer expansions and the Hamilton-Jacobi equation. II. Fermions, dimensional reduction formulasJ. Statist. Phys.51435–456 (1988). Erratum: J. Statist. Phys.971027 (1999).

    Google Scholar 

  8. J. L. Cardy, Directed lattice animals and the Lee-Yang edge singularityJ. Phys. A 15L593–L595 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  9. J. L. Cardy, Conformal invariance and the Yang-Lee edge singularity in two dimensionsPhys. Rev. Lett. 541354–1356 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  10. J.L. Cardy, Exact scaling functions for self-avoiding loops and branched polymersJ. Phys. A 34L665–L672 (2001), arXiv:cond-mat/0107223.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W functionAdv. Comput. Math. 5329–359 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Dhar, Exact solution of a directed-site animals-enumeration problemPhys. Rev. Lett. 51853–856 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. M. E. Fisher, Yang-Lee edge singularity and cp3field theoryPhys. Rev. Lett. 401610–1613 (1978).

    Article  ADS  Google Scholar 

  14. D. E. Feldman, Critical exponents of the random-field0(N)modelPhys. Rev. Lett. 88177–202 (2002), arXiv:cond-mat/0010012.

    Google Scholar 

  15. J. Fröhlich, Mathematical aspects of the physics of disordered systems. InPhénomènes critiques systèmes aléatoires théories de jaugePart II (Les Houches, 1984), Amsterdam: North-Holland, 1986, pp. 725–893.

    Google Scholar 

  16. T. Hara and G. Slade, On the upper critical dimension of lattice trees and lattice animalsJ. Statist. Phys. 591469–1510 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. T. Hara, R. van der Hofstad, and G. Slade, Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models, Ann.Probab. 31349–408 (2003), arXiv:mathph/0011046.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Z. Imbrie, Lower critical dimension of the random-field Ising modelPhys. Rev. Lett. 531747–1750 (1984).

    Article  ADS  Google Scholar 

  19. J. Z. Imbrie, The ground state of the three-dimensional random-field Ising modelCommun. Math. Phys. 98145–176 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. Lai and M. E. Fisher, The universal repulsive-core singularity and Yang-Lee edge criticalityJ. Chem. Phys. 1038144–8155 (1995).

    Article  ADS  Google Scholar 

  21. G. F. Lawler, O. Schramm, and W. Werner, The Dimension of the Planar Brownian Frontier is 4/3Math. Res. Lett. 8401–411 (2001), arXiv: mat h. P R/ 001016 5.

    MathSciNet  MATH  Google Scholar 

  22. J. D. Miller, Exact pair correlation function of a randomly branched polymerEurophys. Lett. 16623–628 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  23. Y. Park and M. E. Fisher, Identity of the universal repulsive-core sin-gularity with Yang-Lee edge criticalityPhys. Rev. E 606323–6328 (1999), arXiv:cond-mat/9907429.

    Article  ADS  Google Scholar 

  24. G. Parisi and N. Sourlas, Random magnetic fields, supersymmetry and negative dimensionsPhys. Rev. Lett. 43744–745 (1979).

    Article  ADS  Google Scholar 

  25. G. Parisi and N. Sourlas, Critical behavior of branched polymers and the Lee-Yang edge singularityPhys. Rev. Lett. 46871–874 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  26. G. Parisi and N. Sourlas, Scale invariance in disordered systems: the example of the random-field Ising modelPhys. Rev. Lett. 89257204 (2002), arXiv:cond-mat/0207415.

    Article  ADS  Google Scholar 

  27. Y. Shapir, Supersymmetric dimer Hamiltonian for lattice branched polymersPhys. Rev. A 281893–1895 (1983).

    Article  ADS  Google Scholar 

  28. Y. Shapir, Supersymmetric statistical models on the latticePhysica D 15129–137 (1985).

    Article  ADS  Google Scholar 

  29. Edward Witten, Two-dimensional gauge theories revisitedJ. Geom. Phys. 9303–368 (1992), arXiv:hep-th/9204083.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Imbrie, J.Z. (2003). Dimensional Reduction and Crossover to Mean-Field Behavior for Branched Polymers. In: Iagolnitzer, D., Rivasseau, V., Zinn-Justin, J. (eds) International Conference on Theoretical Physics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7907-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7907-1_35

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9618-4

  • Online ISBN: 978-3-0348-7907-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics