Skip to main content

How to Simulate Fluid Criticality: The simplest ionic model has Ising behavior but the proof is not so obvious!

  • Conference paper
Book cover International Conference on Theoretical Physics
  • 362 Accesses

Extended Abstract

The essence of simulating criticality inasymmetricfluid models is to discover effectiveunbiasedfinite-size scaling methods that (i) recognize thatboththe critical temperature, TT andthe critical densityp c are unknown and (ii) that can resolve ‘nearby’ critical universality classes. To this endprecisefocused simulations for arangeof box’ sizesL d(inddimensions), are imperative.

Article footnote

*Active coworkers: Y.C. Kim, E. Luijten, G. Orkoulas and A.Z. Panagiotopoulos; support from the National Science Foundation under Grant No. CHE 99–81772

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.E. Fisher and G. Orkoulas, The Yang-Yang anomaly in fluid criticality: Experiment and scaling theoryPhys. Rev. Lett. 85696–699 (2000).

    Article  ADS  Google Scholar 

  2. See, e.g., H. Weingärtner and W. Schröer, Criticality in ionic fluids, Adv.Chem. Phys. 1161 (2001).

    Google Scholar 

  3. G. Orkoulas, M.E. Fisher and A.Z. Panagiotopoulos, Precise simulation of criticality in asymmetric fluidsPhys. Rev. E.6351507:1–17 (2001).

    Google Scholar 

  4. E. Luijten, M.E. Fisher and A.Z. Panagiotopoulos, The heat capacity of the restricted primitive model electrolyteJ. Chem. Phys. 1145468–5471 (2001).

    Article  ADS  Google Scholar 

  5. E. Luijten, M.E. Fisher and A.Z. Panagiotopoulos, Universality class of criticality in the restricted primitive modelPhys. Rev. Lett. 88185701:1–4 (2002).

    Google Scholar 

  6. Y.C. Kim, Fluid Criticality: Experiment, Scaling and Simulations, Ph.D. Thesis (University of Maryland, 2002).

    Google Scholar 

  7. Y.C. Kim, M.E. Fisher and G. OrkoulasAsymmetric fluid criticalityI.Scaling with pressure mixing(arXiv:cond-mat/0212145, 6 Dec 2002)Phys. Rev. E(2003) [in press].

    Google Scholar 

  8. Y.C. Kim and M.E. FisherAsymmetric fluid criticalityII.Finite-size scaling and applications[to be submitted for publication].

    Google Scholar 

  9. See references cited in [5].

    Google Scholar 

  10. S. Bekiranov and M.E. Fisher, Fluctuations in electrolytes: the Lebowitz and other correlation lengthsPhys. Rev. Lett. 815836–39 (1998);

    Article  ADS  Google Scholar 

  11. S. Bekiranov and M.E. Fisher, Diverging correlation lengths in electrolytes: exact results at low densitiesPhys. Rev. E 59492–511 (1999).

    Article  ADS  Google Scholar 

  12. E. Luijten, M.E. Fisher, and A.Z. Panagiotopoulos, Criticality and charge fluctuations in the restricted primitive modelBull. Amer. Phys. Soc. 46(1) 71 (2001) All 4.

    Google Scholar 

  13. Y.C. Kim, M.E. Fisher and E. Luijten, to be published.

    Google Scholar 

  14. J.M. Romero-Enrique, G. Orkoulas, A.Z. Panagiotopoulos, and M.E. Fisher, Coexistence and criticality in size-asymmetric electrolytesPhys. Rev. Lett. 854558–61 (2000).

    Article  ADS  Google Scholar 

  15. A.Z. Panagiotopoulos and M.E. Fisher, Phase transitions in 2:1 and 3:1 hard-core model electrolytesPhys. Rev. Lett. 88045701:1–4 (2002).

    Google Scholar 

  16. Y.C. Kim, M.E. Fisher and E. Luijten, Precise simulation of near-critical fluid coexistence (arXiv: tond-mat/0304032, 1 Apr 2003) [submitted for publication].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Fisher, M.E. (2003). How to Simulate Fluid Criticality: The simplest ionic model has Ising behavior but the proof is not so obvious!. In: Iagolnitzer, D., Rivasseau, V., Zinn-Justin, J. (eds) International Conference on Theoretical Physics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7907-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7907-1_33

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9618-4

  • Online ISBN: 978-3-0348-7907-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics