Skip to main content

The Cosmic Microwave Background

  • Conference paper
International Conference on Theoretical Physics
  • 369 Accesses

Abstract

I review the discovery of the temperature fluctuations in the cosmic microwave background radiation. The underlying theory and the implications for cosmology are described, and I summarize the prospects for future progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.K. Sachs and A.M. Wolfe, “Perturbations of a Cosmological Model and Angular Variations of the Microwave Background,”ApJ147, 73–90 (1967).

    Article  ADS  Google Scholar 

  2. J. Silk “Fluctuations in the Primordial Fireball,”Nature215, 1155–1156 (1967).

    Article  ADS  Google Scholar 

  3. G.F. Smootet al.“Structure in the COBE differential microwave radiometer first-year maps,”ApJ396, L1–5 (1992).

    Article  ADS  Google Scholar 

  4. A. Milleret al.“A Measurement of the Angular Power Spectrum of the CMB from 1 = 100 to 400,”ApJ524, L1–L4 (1999).

    Article  ADS  Google Scholar 

  5. P. de Bernardiset al.“A flat Universe from high-resolution maps of the cosmic microwave background radiation,”Nature 404955–959 (2000).

    Article  ADS  Google Scholar 

  6. S. Hananyet al.“MAXIMA-1: A Measurement of the Cosmic Microwave Background Anisotropy on Angular Scales of 10’ to 5°,”ApJ 545L5–L9 (2000).

    Article  ADS  Google Scholar 

  7. S. Padinet al.“First Intrinsic Anisotropy Observations with the Cosmic Background Imager,”ApJ 549Ll-L5 (2001).

    Article  Google Scholar 

  8. N. Halversonet al.“Degree Angular Scale Interferometer First Results: A Measurement of the Cosmic Microwave Background Angular Power Spectrum,”ApJ 56838–45 (2002).

    Article  ADS  Google Scholar 

  9. A. Tayloret al.“First results from the Very Small Array - II. Observations of the CMB,” MNRAS, in press (2002), astro-ph/0205381.

    Google Scholar 

  10. A. Benoit et al., “The Cosmic Microwave Background Anisotropy Power Spectrum measured by Archeops,”AP’Ain press (2002), astro-ph/0210305.

    Google Scholar 

  11. E. Lifshitz, “On the Gravitational Instability of the Expanding Universe,”Journal of Physics USSR 10116–122 (1946).

    MathSciNet  MATH  Google Scholar 

  12. M. White, J. Silk and D. Scott, “From Microwave Anisotropies to Cosmology,”Science 268829–835 (1995).

    Article  ADS  Google Scholar 

  13. E. Gawiser andJ.Silk, “Extracting Primordial Density Fluctuations,”Science 2801405--1411 (1998).

    Article  ADS  Google Scholar 

  14. M. Tegmark and M. Zaldiarraga, “Separating the Early Universe from the Late Universe: cosmological parameter estimation beyond the black box,”PRDin press (2002).

    Google Scholar 

  15. J. Peacock et al., “A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey,”Nature 410169–173 (2001).

    Article  ADS  Google Scholar 

  16. O.Lahavet al.“The 2dF Galaxy Redshift Survey: the amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing,”MNRAS 333961–968 (2002).

    Article  ADS  Google Scholar 

  17. M. Brownet al.“The shear power spectrum from the COMBO-17 survey,”MNRASsubmitted, astro-ph/0210213 (2002).

    Google Scholar 

  18. H. HoekstraL.van Waerbeke, M. Gladders, Y. Mellier and H. Yee, “Weak lensing study of galaxy biasing,”ApJin press (2002), astro-ph/0206103.

    Google Scholar 

  19. P. Schuecker, H. Boehringer, C. Collins and L. Guzzo, “The REFLEX Galaxy Cluster Survey VII: 52 and vsfrom cluster abundance and large-scale clustering,” AP4Ain press (2002), astro-ph/ 0208251.

    Google Scholar 

  20. G. Gamow, “Expanding Universe and the Origin of the Elements,”Phys. Rev. 70572–573 (1946).

    Article  ADS  Google Scholar 

  21. R. Alpher and R. Herman, “Evolution of the Universe,”Nature 162774–775 (1948).

    Article  ADS  Google Scholar 

  22. Y. ZeldovichJETP 431561 (1962).

    Google Scholar 

  23. A.G. Doroshkevich andI.D.Novikov, “Mean Radiation Density in the Meta-galaxy and Some Problems of Relativistic Cosmology,”Doklady Akadamie Nauk. USSR 154809–811 (1964).

    Google Scholar 

  24. J.C. Mather, D.J. Fixsen, R.A. Shafer, Mosier and WilkinsonD.“Calibrator Design for the COBE Far-Infrared Absolute Spectrophotometer (FIRAS),”ApJ 512511–520 (1998).

    Article  ADS  Google Scholar 

  25. E. Harrison, “Fluctuations at the Threshold of Classical Cosmology,”PRD 12726–2730 (1970).

    Article  ADS  Google Scholar 

  26. P.J.E. Peebles andJ.T.Yu, “Primeval Adiabatic Perturbation in an Expanding Universe,”ApJ 162815–836 (1970).

    Article  ADS  Google Scholar 

  27. Y. Zeldovich, “A Hypothesis Unifying the Structure and Entropy of the Universe,”MNRAS 1601P–3P (1972).

    ADS  Google Scholar 

  28. A. Guth, “Inflationary Universe: a Possible Solution to the Horizon and Flatness Problems,”PRD 23347–356 (1981).

    Article  ADS  Google Scholar 

  29. A. Linde, “A New Inflationary Universe Scenario: a Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems,”Phys. Lett. 108B389–393 (1982).

    MathSciNet  ADS  Google Scholar 

  30. A. Albrecht and P. Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking,”PRL 48.1220–1223 (1982).

    Article  ADS  Google Scholar 

  31. P.J.E. Peebles, “Recombination of the primeval plasma”ApJ153, 1–12 (1968).

    Article  ADS  Google Scholar 

  32. J.R. Bond and G. Efstathiou, “Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter,”ApJ285, L45–48 (1984).

    Article  ADS  Google Scholar 

  33. N. Vittorio, J. Silk, “Fine scale anisotropy of the cosmic microwave background in a universe dominated by cold dark matter”ApJ285,L39–43 (1984).

    Article  ADS  Google Scholar 

  34. A.G. Doroshkevich, I.B. Zel’dovich, R.A. Sunyaev, “Fluctuations of the microwave background radiation in the adiabatic and entropic theories of galaxy formation,”Soviet Astronomy 22523–528 (1978).

    ADS  Google Scholar 

  35. J. Silk and M. L. Wilson, “Residual Fluctuations in the Matter and Radiation Distribution after the Decoupling Epoch,”Physica Scripta 21708–713 (1980).

    Article  ADS  Google Scholar 

  36. R. Sunyaev and Ya. B. Zeldovich, “Small-Scale Fluctuations of Relic Radiation,”ApεSS 73–19 (1970).

    Google Scholar 

  37. A. SakharovJETP 49345 (1965).

    Google Scholar 

  38. W. Percivalet al.“The 2dF Galaxy Redshift Survey: The power spectrum and the matter content of the universe,”MNRAS 3271297–1306 (2001).

    Article  ADS  Google Scholar 

  39. J. Ruhlet al.“Improved Measurement of the Angular Power Spectrum of Temperature Anisotropy in the CMB from Two New Analyses of BOOMERANG Observations,” astro-ph/0212229 (2002).

    Google Scholar 

  40. M.L. Wilson and J. Silk, “On the anisotropy of the cosmological background matter and radiation distribution.I -The radiation anisotropy in a spatially flat universe,”ApJ 24314–25 (1981).

    Article  ADS  Google Scholar 

  41. D. Scott, M. Srednicki and M. White, “Sample variance in small-scale cosmic microwave background anisotropy experiments,”ApJ 421L5–L7 (1994).

    Article  ADS  Google Scholar 

  42. G. Jungman, M. Kamionkowski, A. Kosowsky and D. Spergel, “Cosmological-parameter determination with microwave background maps,”Phys. Rev. D 541332–1344 (1996).

    Article  ADS  Google Scholar 

  43. J. Silk, “Cosmic Black-Body Radiation and Galaxy Formation,”ApJ 151459–472 (1968).

    Article  ADS  Google Scholar 

  44. W. Hu and N. Sugiyama, “Toward understanding CMB anisotropies and their implications,”PRD 512599–2630 (1995).

    Article  ADS  Google Scholar 

  45. J. Silk and M.L. Wilson, “Large-scale anisotropy of the cosmic microwave background radiation,”ApJ 244L37–42 (1981).

    Article  ADS  Google Scholar 

  46. N. Gouda, N. Sugiyama, M. Sasaki, “Large Angle Anisotropy of the Cosmic Microwave Background in an Open Universe,”Prog. Theor. Phys . 851023–1039 (1991).

    Article  ADS  Google Scholar 

  47. M. Kamionkowski, D. N. Spergel, N. Sugiyama, “Small-Scale Cosmic Microwave Background Anisotropies as a Probe of the Geometry of the Universe,”ApJ 426L57–60 (1994).

    Article  ADS  Google Scholar 

  48. J. Bondet al.“Measuring cosmological parameters with cosmic microwave background experiments,”PRL 7213–16 (1994)

    Article  ADS  Google Scholar 

  49. N. Sugiyama, J. Silk, N. Vittorio, “Reionization and Cosmic Microwave Anisotropies,”ApJ 419L1–4 (1993).

    Article  ADS  Google Scholar 

  50. R.B. Metcalf and J. Silk, “Gravitational Magnification of the Cosmic Microwave Background,”ApJ 4891–6 (1997).

    Article  ADS  Google Scholar 

  51. U. Seljak and M. Zaldiarraga, “Measuring Dark Matter Power Spectrum from Cosmic Microwave Background,”PRL 822636–2639 (1999).

    Article  ADS  Google Scholar 

  52. N. Kaiser, “Small-angle anisotropy of the microwave background radiation in the adiabatic theory,”MNRAS 2021169–1180 (1983).

    ADS  Google Scholar 

  53. G. Dautcourt, “Small-scale variations in the cosmic microwave background,”MNRAS 144255–278 (1969).

    ADS  Google Scholar 

  54. A.G. Polnarev, “Polarization and Anisotropy Induced in the Microwave Background by Cosmological Gravitational Waves”Soviet Astronomy 29607–613 (1985).

    ADS  Google Scholar 

  55. W. Percival et al., “Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra,” MNRAS, in press, astro-ph/0206256.

    Google Scholar 

  56. U. Seljak and M. Zaldarriaga, “Signature of Gravity Waves in Polarization of the Microwave Background,”Phys. Rev. Lett. 782054–2057, astroph/9609169 (1997).

    Article  ADS  Google Scholar 

  57. U. Seljak, “Measuring Polarization in the Cosmic Microwave Background,”ApJ 4826–16 (1997).

    Article  ADS  Google Scholar 

  58. W. Hu and M. White, “The Damping Tail of Cosmic Microwave Background Anisotropies,”ApJ 479568–579 (1997).

    Article  ADS  Google Scholar 

  59. M. Kaplinghat, M. Chu, Z. Haiman, G. Holder, L. Knox, C. Skordis, “Probing the Reionization History of the Universe using the Cosmic Microwave Background Polarization,”ApJin press (2002) astro-ph/0207591.

    Google Scholar 

  60. J. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W. Halverson and W. L. Holzapfel, “Detection of Polarization in the Cosmic Microwave Background using DASI,” in press (2002) astro-ph//0209478.

    Google Scholar 

  61. B. Masonet al.“The Anisotropy of the Microwave Background to 1 = 3500: Deep Field Observations with the Cosmic Background Imager,”ApJin press (2002) astro-ph//0205384.

    Google Scholar 

  62. J. Ostriker and E. Vishniac, “Generation of microwave background fluctuations from nonlinear perturbations at the era of galaxy formation,”ApJ 306L51–54 (1986).

    Article  ADS  Google Scholar 

  63. M.J. Rees and D.W. Sciama, “Large-scale density inhomogeneities in the universe”Nature 217511–516 (1968).

    Article  ADS  Google Scholar 

  64. W. Hu, “Reionization revisited: secondary CMB anisotropies and polarization,”ApJ529, 12–25, astro-ph/9907103 (2000).

    Article  ADS  Google Scholar 

  65. P. Binetruy and J. Silk, “Probing Large Distance Higher-Dimensional Gravity with Cosmic Microwave Background Measurements,”PRL87, 031102(1)-031102(4)(2001).

    Article  ADS  Google Scholar 

  66. Ya. Zeldovich and A. Starobinskii, “Quantum Creation of a Universe with Nontrivial Topology,”Soviet Astr. Lett.10, 135–137 (1984).

    ADS  Google Scholar 

  67. D. Stevens, D. Scott, J. Silk, “Microwave background anisotropy in a toroidal universe,”PRL71, 20–23 (1993).

    Article  ADS  Google Scholar 

  68. A. Oliveira-Costa, G.Smoot and A. Starobinsky, “Can the Lack of Symmetry in the COBE DMR Maps Constrain the Topology of the Universe?,”ApJ 468457–461 (1996).

    Article  ADS  Google Scholar 

  69. N. Cornish, D. Spergel, G. Starkman, “Circles in the Sky: Finding Topology with the Microwave Background Radiation,”Class. Quant. Gray. 152657–2670 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Silk, J. (2003). The Cosmic Microwave Background. In: Iagolnitzer, D., Rivasseau, V., Zinn-Justin, J. (eds) International Conference on Theoretical Physics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7907-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7907-1_22

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9618-4

  • Online ISBN: 978-3-0348-7907-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics