Skip to main content

Crystal Growth and Impingement in Polymer Melts

  • Conference paper
Free Boundary Problems

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 147))

Abstract

Crystallization of polymeric materials is a solidification process in strong interaction with heat conduction. Both the basic mechanisms involved in the solidification from a melt, namely the nucleation and growth of crystals, are strongly influenced by the temperature and its variation. Vice versa, the latent heat is rather large for polymeric materials, so that it causes a considerable change in the heat transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Barles, H.M. Soner, P.E. Souganidis, Front propagation and phase-field theory, SIAM J. Cont. Optim. 31 (1993), 439–469.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Burger, Iterative regularization of an identification problem arising in polymer crystallization, SIAM J. Numer. Anal. 39 (2001), 1029–1055.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Burger, Growth of multiple crystals in polymer melts (2001), submitted.

    Google Scholar 

  4. M. Burger, Growth fronts of first-order Hamilton—Jacobi equations, SFB-Report 02–8 (University Linz, 2002), and submitted.

    Google Scholar 

  5. M. Burger, V. Capasso, Mathematical modelling and simulation of non-isothermal crystallization of polymers, Math. Mod. Meth. Appl. Sci. 11 (2001), 1029–1054.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Burger, V. Capasso, G. Eder, Modelling crystallization of polymers in temperature fields, ZAMM 82 (2002), 51–63.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Burger, V. Capasso, H.W. Engl, Inverse problems related to crystallization of polymers, Inverse Problems 15 (1999), 155–173.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Burger, V. Capasso, C. Salani, Modelling multi-dimensional crystallization of polymers in interaction with heat transfer, Nonlinear Anal. B, Real World Appl. 3 (2002), 139–160.

    Article  MathSciNet  MATH  Google Scholar 

  9. V. Capasso, C. Salani, Stochastic birth-and-growth processes modelling crystallization of polymers in a spatially heterogenous temperature field, Nonlinear Anal. B, Real World Appl. 1 (2000), 485–498.

    Article  MathSciNet  MATH  Google Scholar 

  10. M.G. Crandall, P.L. Lions, On existence and uniqueness of solutions of Hamilton-Jacobi equations, Nonlinear Anal. 10 (1986), 353–370.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Friedman, J.L. Velazquez, A free boundary problem associated with crystallization of polymers in a temperature field, Indiana Univ. Math. Journal 50 (2001), 1609–1650.

    MathSciNet  MATH  Google Scholar 

  12. E.R. Jakobsen, K.H. Karlsen, Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations, CAM Preprint 01–03 (Department of Mathematics, UCLA, 2001).

    Google Scholar 

  13. G.S. Jiang, D. Peng, Weighted ENO-schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (2000), 2126–2143.

    Article  MathSciNet  MATH  Google Scholar 

  14. O. Ley, Lower bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts, Adv. Differ. Equ. 6 (2001), 547–576.

    MathSciNet  MATH  Google Scholar 

  15. Z. Li, A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal. 35 (1998), 230–254.

    Article  MathSciNet  MATH  Google Scholar 

  16. Z. Li, Y. Shen, A numerical method for solving heat equations involving interfaces, Electron. J. Diff. Eqns., C 3 (1999), 100–108.

    Google Scholar 

  17. P.L. Lions, Generalized Solutions of Hamilton-Jacobi Equations (Pitman, Boston, London, Melbourne, 1982).

    Google Scholar 

  18. A.M. Meirmanov, The Stefan Problem (De Gruyter, Berlin, 1992).

    Book  MATH  Google Scholar 

  19. A. Micheletti, M. Burger, Stochastic and deterministic simulation of nonisothermal crystallization of polymers, J.Math.Chem. 30 (2001), 169–193.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Micheletti, V. Capasso, The stochastic geometry of polymer crystallization processes, Stoch. Anal. Appl. 15 (1997), 355–373.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Monasse, J.M. Haudin, Thermal dependence of nucleation and growth rate in polypropylene by non-isothermal calorimetry, Colloid Polym. Sci. 264 (1986), 117–122.

    Article  Google Scholar 

  22. S.J. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer, Berlin, Heidelberg, New York, 2002).

    Google Scholar 

  23. S.J. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys. 79 (1988), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  24. S.J. Osher, C.W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal. 28 (1991), 907–922.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Ratajski, H. Janeschitz-Kriegl, How to determine high growth speeds in polymer crystallization, Colloid Polym. Sci. 274 (1996), 938–951.

    Article  Google Scholar 

  26. G.E.W. Schulze, T.R. Naujeck, A growing 21) spherulite and calculus of variations, Colloid Polym. Science 269 (1991), 689–703.

    Article  Google Scholar 

  27. J.A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press, 2nd ed., Cambridge, 1999).

    MATH  Google Scholar 

  28. J.E. Taylor, J.W. Cahn, C.A. Handwerker, Geometric models of crystal growth, Acta Metall. Mater. 40 (1992), 1443–1472.

    Article  Google Scholar 

  29. A. Visintin, Models of phase-relaxation, Diff. Int. Equations 14 (2001), 1469–1486.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Burger, M. (2003). Crystal Growth and Impingement in Polymer Melts. In: Colli, P., Verdi, C., Visintin, A. (eds) Free Boundary Problems. ISNM International Series of Numerical Mathematics, vol 147. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7893-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7893-7_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9613-9

  • Online ISBN: 978-3-0348-7893-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics