Skip to main content

Intersection Exponents and the Multifractal Spectrum for Measures on Brownian Paths

  • Conference paper
Fractal Geometry and Stochastics III

Part of the book series: Progress in Probability ((PRPR,volume 57))

Abstract

The aim of this paper is to give a survey of recent developments in the multifractal analysis of measures arising in the study of Brownian motion. We first discuss the harmonic measure on a Brownian path, studied by Lawler, and the intersection local time on the intersection of two independent Brownian paths, studied by Klenke and Morters. In both examples the intersection exponents of Brownian motion play a crucial role in the multifractal analysis. Whereas the first example is in line with the multifractal formalism, the second example is not and more subtle effects come into the picture. Then we discuss the occupation measure of Brownian motion, in which case a refined multifractal analysis was carried out by Dembo, Peres, Rosen and Zeitouni.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.T. Barlow and E. Perkins Levels at which every Brownian excursion is exceptional. Seminar on probability XVIII, Springer LNM 1059 (1984) 1–28.

    MathSciNet  Google Scholar 

  2. R. Bass, K. Burdzy and D. Khoshnevisan. Intersection local time for points of infinite multiplicity. Ann. Probab. 22 (1994), 566–625.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Beffara. The dimension of the SLE curves. Preprint arXiv: Math.PR/0211322 (2003).

    Google Scholar 

  4. R. Cawley and R. D. Mauldin. Multifractal decompositions of Moran fractals. Adv. Math. 92 (1992), 196–236.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Dembo. Favourite points, cover times and fractals. Lecture notes, Ecole d'été de St. Flour (2003), Springer, to appear.

    Google Scholar 

  6. A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thick points for spatial Brownian motion: multifractal analysis of occupation measure. Ann. Probab. 28 (2000), 1–35.

    MathSciNet  MATH  Google Scholar 

  7. A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thin points for Brownian motion. Ann. Inst. Henri Poincaré, Probab. Stat. 36 (2000), 749–774.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thick points for planar Brownian motion and the Erdös-Taylor conjecture on random walk. Acta Math. 186 (2001), 239–270.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Dolgopyat and V. Sidorov. Multifractal properties of the sets of zeroes of Brownian paths. Fund. Math. 147 (1995), 157–171.

    MathSciNet  MATH  Google Scholar 

  10. B. Duplantier. Conformal fractal geometry and boundary quantum gravity. arXiv:math-ph/0303034, 118pp. (2003).

    Google Scholar 

  11. B. Duplantier and K. H. Kwon. Conformal invariance and intersections of random walks. Phys. Rev. Lett. 61 (1988), 2514–1517.

    Article  Google Scholar 

  12. J. Hawkes. Trees generated by a simple branching process. J. London Math. Soc. 24 (1981) 373–384.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. C. Halsey, M. N. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Shraiman. Fractal measures and their singularities. Phys. Rev. A33 (1986), 1141–1151.

    MathSciNet  Google Scholar 

  14. X. Hu and S. J. Taylor. The multifractal structure of stable occupation measure. Stoch. Processes Appl. 66 (1997) 283–299.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. Struzik, and H. E. Stanley. Multifractality in human heartbeat dynamics. Nature 399 (1999), 461–465.

    Article  Google Scholar 

  16. R. Kaufman. Une propriété métrigue du mouvement Brownien. C. R. Acad. Sci. Paris 268 (1969), 727–728.

    MathSciNet  MATH  Google Scholar 

  17. D. Khoshnevisan, Y. Peres, and Y. Xiao. Limsup random fractals. Electron. J. Probab. 5, Paper No. 4, (2000).

    Google Scholar 

  18. A. Klenke and P. Mörters. The multifractal spectrum of Brownian intersection local times. Preprint, University of Bath (2004).

    Google Scholar 

  19. W. König and P. Mörters. Brownian intersection local times: upper tails and thick points. Ann. Probab. 30 (2002), 1605–1656.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. F. Lawler. Intersections of random walks. Birkhäuser, Basel (1991).

    MATH  Google Scholar 

  21. G. F. Lawler. Hausdorff dimension of cut points for Brownian motion. Elect. Journal Probab. 1, Paper No. 2, (1996).

    Google Scholar 

  22. G. F. Lawler. The dimension of the frontier of planar Brownian motion. Elect. Comm. in Probab. 1 (1996), 29–47.

    MathSciNet  MATH  Google Scholar 

  23. G. F. Lawler. Strict concavity of the intersection exponent for Brownian motion in two and three dimensions. Math. Phys. Electron. Journal 4, Paper No.5, (1998).

    Google Scholar 

  24. G. F. Lawler. Geometric and fractal properties of Brownian motion and random walk paths in two and three dimensions. Bolyai Math. Soc. Studies, 9 (1999), 219–258.

    MathSciNet  Google Scholar 

  25. G. F. Lawler. Multifractal nature of two dimensional simple random walk paths. Sympos. Math. XXXIX, 231–264, Cambridge Univ. Press, Cambridge, (1999).

    Google Scholar 

  26. G. F. Lawler. The frontier of a Brownian path is multifractal. Unpublished (1999).

    Google Scholar 

  27. G. F. Lawler,O. Schramm and W. Werner. The dimension of the Brownian frontier is 4/3. Math. Res. Lett. 8 (2001), 401–411.

    MathSciNet  MATH  Google Scholar 

  28. G. F. Lawler, O. Schramm and W. Werner. Values of Brownian intersection exponents I: Half-plane exponents. Acta Math. 187 (2001), 237–273.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. F. Lawler, O. Schramm and W. Werner. Values of Brownian intersection exponents, II: Plane exponents. Acta Math. 187 (2001), 275–308.

    Article  MathSciNet  MATH  Google Scholar 

  30. G. F. Lawler, O. Schramm and W. Werner. Values of Brownian intersection exponents. III: Two-sided exponents. Ann. Inst. Henri Poincaré 38 (2002), 109–123.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.-F. Le Gall. The exact Hausdorff measure of Brownian multiple points I. In: Seminar on Stochastic Processes 1986, 107–137, Birkhäuser, Boston (1987).

    Google Scholar 

  32. J.-F. Le Gall. The exact Hausdorff measure of Brownian multiple points II. In: Seminar on Stochastic Processes 1988, 193–197, Birkhäuser, Boston (1989).

    Google Scholar 

  33. B. B. Mandelbrot. Intermittent turbulence in self-similar cascades: Divergence of high moments and dimension of the carrier. J. Fluid Mech. 62 (1974), 331–358.

    Article  MATH  Google Scholar 

  34. P. Mörters and N. R. Shieh. Thin and thick points for branching measure on a Galton-Watson tree. Stat. and Probab. Letters 58 (2002) 13–22.

    Article  Google Scholar 

  35. L. Olsen. Multifractal geometry. In: Fractal Geometry and Stochastics II. C. Bandt, S. Graf, M. Zähle (Eds), Birkhäuser, Basel (2000), pp. 3–37.

    Chapter  Google Scholar 

  36. S. Orey and S. J. Taylor. How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. 28 (1974), 174–192.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Peres. Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré (Physique Théorique) 64 (1996), 339–347.

    MathSciNet  MATH  Google Scholar 

  38. E.A. Perkins and S.J. Taylor. Measuring close approaches on a Brownian path. Ann. Probab. 16 (1988), 1458–1480.

    Article  MathSciNet  MATH  Google Scholar 

  39. E.A. Perkins and S.J. Taylor. The multifractal structure of super-Brownian motion. Ann. Inst. Henri Poincaré. 34 (1998), 97–138.

    Article  MathSciNet  MATH  Google Scholar 

  40. D. A. Rand. The singularity spectrum f (a) for cookie-cutters. Ergod. Th. & Dynam. Sys. 9 (1989), 527–541

    Article  MathSciNet  MATH  Google Scholar 

  41. N. R. Shieh and S. J. Taylor. Logarithmic multifractal spectrum of stable occupation measure. Stoch. Processes Appl. 75 (1998), 249–261.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Turiel and C. Pérez Vicente. Multifractal geometry in stock market time series. Physica A 322 (2003), 629–649.

    Article  MathSciNet  MATH  Google Scholar 

  43. E. B. Vul, Ya. G. Sinai and K. M. Khanin, Feigenbaum universality and the thermodynamic formalism. Russian Math. Surveys 39 (1984), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Mörters, P. (2004). Intersection Exponents and the Multifractal Spectrum for Measures on Brownian Paths. In: Bandt, C., Mosco, U., Zähle, M. (eds) Fractal Geometry and Stochastics III. Progress in Probability, vol 57. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7891-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7891-3_9

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9612-2

  • Online ISBN: 978-3-0348-7891-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics