Skip to main content

Spectral Zeta Function of Symmetric Fractals

  • Conference paper
Fractal Geometry and Stochastics III

Part of the book series: Progress in Probability ((PRPR,volume 57))

Abstract

This is an expository paper which includes several topics related to the spectral analysis on fractals. Such analysis on certain symmetric fractals can be completely described in terms of complex dynamics of a polynomial. The examples of such fractals include the Sierpiński gasket and an interval with a fractal measure. We discuss the spectral type of the Laplacian, complex spectral dimensions and spectral zeta function. The spectral zeta function has a product structure that involves a certain new zeta function of a polynomial and a “geometric” part. A similar product structure in the case of fractal strings was discovered by M. L. Lapidus. We give examples were the spectrum is singularly continuous on one dimensional fractals but is pure point on the infinite Sierpiński gasket, with a complete set of compactly supported eigenfunctions. We describe the spectrum of the Laplacian (in terms of the complex dynamics of a polynomial) and all the eigenfunctions with compact support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Adams, S A. Smith, R. Strichartz and A. Teplyaev, The spectrum of the Laplacian on the pentagasket. Fractals in Graz 2001, Trends Math., Birkhäuser Basel (2003)1–24.

    Google Scholar 

  2. S. Alexander, Some properties of the spectrum of the Sierpiriski gasket in a magnetic field. Phys. Rev. B 29 (1984), 5504–5508.

    Article  Google Scholar 

  3. M.T. Barlow, T. Coulhon and A. Grigor’yan, Manifolds and graphs with slow heat kernel decay. Invent. Math. 144 (2001), 609–649.

    MathSciNet  MATH  Google Scholar 

  4. M. T. Barlow and B. M. Hambly, Transition density estimates for Brownian motion on scale irregular Sierpinski gaskets. Ann. Inst. H. Poincare Probab. Statist., 33 (1997), 531–557.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. T. Barlow and J. Kigami, Localized eigenfunctions of the Laplacian on p.c.f. self-similar sets. J. London Math. Soc., 56 (1997), 320–332.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Bartholdi and R. Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal groups. Serdica Math. J. 28 (2002), 47–90.

    MathSciNet  MATH  Google Scholar 

  7. L. Bartholdi, R. Grigorchuk and V. Nekrashevich, From fractal groups to fractal sets. Fractals in Graz 2001, Trends Math., Birkäauser Basel (2003) 25–118.

    Google Scholar 

  8. O. Ben-Bassat, R. S. Strichartz and A. Teplyaev, What is not in the domain of the Laplacian on Sierpinski gasket type fractals. J. Funct. Anal. 166 (1999), 197–217.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Bessis, J. Geronimo and P. Moussa, Mellin transforms associated with Julia sets and physical applications. J. Statist. Phys. 34 (1984), 75–110.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Bessis, J. S. Geronimo and P. Moussa, Function weighted measures and orthogonal polynomials on Julia sets. Constr. Approx. 4, (1988), 157–173.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Bessis, J. Geronimo and P. Moussa, Erratum: “Function weighted measures and orthogonal polynomials on Julia sets” [Constr. Approx. 4 (1988), no. 2, 157–1731. Constr. Approx. 6 (1990), 335–336.

    Google Scholar 

  12. E.J. Bird, S.-M. Ngai and A. TeplyaevFractal Laplacians on the Unit Interval, to appear in Annales des sciences mathematiques du Quebec (2003).

    Google Scholar 

  13. T. Coulhon and A. Grigor’yan, Pointwise estimates for transitional probabilities of random walks in infinite graphs. Fractals in Graz 2001, Trends Math., Birkhäuser Basel (2003) 119–134.

    Google Scholar 

  14. K. Dalrymple, R. S. Strichartz and J. P. Vinson, Fractal differential equations on the Sierpinski gasket. J. Fourier Anal. Appl., 5 (1999), 203–284.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Damanik and B. Solomyak, Some high-complexity Hamiltonians with purely singular continuous spectrum. Ann. Henri Poincare 3 (2002), 99–105.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. J. Falconer, The Geometry of Fractal Sets. Cambridge Tracts in Mathematics, 85. Cambridge University Press, 1986.

    Google Scholar 

  17. M. Fukushima and T. Shima, On a spectral analysis for the Sierpiriski gasket. Potential Analysis 1,(1992), 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Gefen, A. Aharony and B. B. Mandelbrot, Phase transitions on fractals. I. Quasi-linear lattices. II. Sierpiński gaskets. III. Infinitely ramified lattices. J. Phys. A 16 (1983), 1267–1278; 17 (1984), 435–444 and 1277–1289.

    Google Scholar 

  19. R. Grigorchuk and A.żuk, On the asymptotic spectrum of random walks on infinite families of graphs. Random walks and discrete potential theory (Cortona, 1997), 188–204, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  20. B. M. Hambly, On the asymptotics of the eigenvalue counting function for random recursive Sierpinski gaskets. Probab. Theory Related Fields, 117 (2000), 221–247.

    Article  MathSciNet  MATH  Google Scholar 

  21. R. G. Hohifeld and N. Cohen, Self-Similarity and the Geometric Requirements for Frequency Independence in Antennae. Fractals 7 (1999), 79–84.

    Article  Google Scholar 

  22. S. Jitomirskaya, Nonperturbative localization. Proceedings of the International Congress of Mathematicians, VolIII (Beijing, 2002), 445–455, Higher Ed. Press, Beijing, 2002.

    Google Scholar 

  23. A. Jonsson, The trace of functions in the domain of the Dirichlet form. Fractal Geometry and Stochastics III, Birkhäuser (2004).

    Google Scholar 

  24. V. A. Kaimanovich, Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization. Fractals in Graz 2001, Trends Math., Birkhauser Basel (2003) 145–184.

    Google Scholar 

  25. V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy. Ann. Probab., 11 (1983), 457–490.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Kigami, A harmonic calculus on the Sierpiński spaces. Japan J. Appl. Math. 6 (1989), 259–290.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Kigami, Harmonic calculus on p.c.f. self-similar sets. Trans. Amer. Math. Soc. 335, (1993), 721–755.

    MathSciNet  MATH  Google Scholar 

  28. J. Kigami, Harmonic metric and Dirichlet form on the Sierpiński gasket. Asymptotic problems in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), 201–218, Pitman Res. Notes Math. Ser., 283, Longman Sci. Tech., Harlow, 1993.

    Google Scholar 

  29. J. Kigami, Distributions of localized eigenvalues of Laplacians on p.c.f. self-similar sets. J. Funct. Anal. 156 (1998), 170–198.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Kigami, Analysis on fractals. Cambridge Tracts in Mathematics 143, Cambridge University Press, 2001.

    Google Scholar 

  31. J. Kigami and M. L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals. Comm Math. Phys. 158 (1993), 93–125..

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Kigami and M. L. Lapidus, Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals. Comm Math. Phys. 217 (2001), 165–180.

    Article  MathSciNet  MATH  Google Scholar 

  33. B. Kröll, Green functions on self-similar graphs and bounds for the spectrum of the Laplacian. Ann. Inst. Fourier (Grenoble) 52 (2002), 1875–1900.

    Article  MathSciNet  Google Scholar 

  34. T. Kumagai, Function spaces and stochastic processes on fractals: heat kernel estimates for jump-type processes. Fractal Geometry and Stochastics III, Birkhauser (2004).

    Google Scholar 

  35. M. L. Lapidus, Spectral and fractal geometry: from the Weyl-Berry conjecture for the vibrations of fractal drums to the Riemann zeta-function. Differential equations and mathematical physics (Birmingham, AL, 1990),151–181, Math. Sci. Engrg., 186, Academic Press, Boston, MA, 1992.

    Google Scholar 

  36. M. L. Lapidus and M. van Frankenhuysen, Fractal geometry and number theory. Complex dimensions of fractal strings and zeros of zeta functions. Birkhäuser, Boston, 2000.

    MATH  Google Scholar 

  37. L. Malozemov and A. Teplyaev, Pure point spectrum of the Laplacians on fractal graphs. J. Funct. Anal 129 (1995), 390–405.

    Article  MathSciNet  MATH  Google Scholar 

  38. L. Malozemov and A. Teplyaev, Self-similarity, operators and dynamics. Math. Phys. Anal. Geom. 6 (2003), 201–218.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. D. Mauldin and M. Urba ński, Dimension and measures for a curvilinear Sierpinski gasket or Apollonian packing. Adv. Math., 136 (1998), 26–38.

    Article  MathSciNet  MATH  Google Scholar 

  40. V. Metz, Self-similar fractals and self-similar energy. Fractals in Graz 2001, Trends Math., Birkhauser Basel (2003) 225–240.

    Google Scholar 

  41. V. Metz and K.-T. Sturm, Gaussian and non-Gaussian estimates for heat kernels on the Sierpinski gasket. Dirichlet forms and stochastic processes (Beijing, 1993), 283–289, de Gruyter, Berlin, 1995.

    Google Scholar 

  42. R. Meyers, R. Strichartz and A. Teplyaev, Dirichlet forms on the Sierpinski gasket, to appear in Pacific J. Math. (2003).

    Google Scholar 

  43. J. Needleman, R. Strichartz, A. Teplyaev and P.-L. Yung, Calculus on the Sierpinski gasket: polynomials exponentials and power series, submitted (2003).

    Google Scholar 

  44. P. Nikitin, The Hausdorff dimension of the harmonic measure on a de Rham curve. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 283 (2001), Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 6,206–223.

    Google Scholar 

  45. A. Öberg, B.S. Strichartz and A.Q. Yingst, Level sets of harmonic functions on the Sierpinski gasket. Ark. Mat. 40 (2002), 335–362.

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Peres and B. Solomyak, Problems on self-similar sets and self-affine sets: an update. Fractal geometry and stochastics, II (Greifswald/Koserow, 1998), 95–106, Progr. Probab., 46, Birkha”user, Basel, 2000.

    Google Scholar 

  47. R. Rammal, Spectrum of harmonic excitations on fractals. J. Physique 45,(1984), 191–206.

    Article  MathSciNet  Google Scholar 

  48. R. Rammal and G. Toulouse, Random walks on fractal structures and percolation clusters. J. Physique Letters 44,(1983), L13—L22.

    Google Scholar 

  49. G. de Rham, Un peu de mathéiques à propos d’une courbe plane. Elemente der Math., 2,(1947), 73–76,89–97.

    MathSciNet  Google Scholar 

  50. G. de Rham, Sur une courbe plane. J. Math. Pures Appl., 35,(1956), 25–42.

    MathSciNet  MATH  Google Scholar 

  51. G. de Rham, Sur quelques courbes definies par des equations fonctionnelles. Univ. e Politec. Torino. Rend. Sem. Mat., 16,(1956/1957), 101–113.

    MathSciNet  Google Scholar 

  52. G. de Rham, Sur les courbes limites de polygones obtenus par trisection. Enseignemerit Math., 5, (1959), 29–43.

    MATH  Google Scholar 

  53. C. Sabot, Pure point spectrum for the Laplacian on unbounded nested fractals. J. Funct. Anal. 173, (2000), 497–524.

    MathSciNet  MATH  Google Scholar 

  54. C. Sabot, Integrated density of states of self-similar Sturm-Liouville operators and holomorphic dynamics in higher dimension. Ann. Inst. H. Poincare Probab. Statist. 37, (2001), 275–311.

    Article  MathSciNet  MATH  Google Scholar 

  55. C. Sabot, Spectral properties of self-similar lattices and iteration of rational maps. Mem. Soc. Math. Fr. (N.S.) 92, (2003).

    Google Scholar 

  56. H. Schulz-Baldes, Anomalous transport in aperiodic media. XIIIth International Congress on Mathematical Physics (London, 2000), 199–205, Int. Press, Boston, MA, 2001.

    Google Scholar 

  57. T. Shima, On eigenvalue problems for Laplacians on p.c.f. self-similar sets. Japan J. Indust. Appl. Math. 13 (1996), 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  58. N. Sidorov and A. M. Vershik, Ergodic properties of the Erdös measure,the entropy of the golden shift,and related problems. Monatsh. Math.,126, (1998), 215–261.

    Article  MathSciNet  MATH  Google Scholar 

  59. B. Simon,Singular spectrum: recent results and open questions. XIth International Congress of Mathematical Physics (Paris, 1994), 507–512, Internat. Press, Cambridge, MA, 1995.

    Google Scholar 

  60. B. Simon and T. Wolff, Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math. 126, (1986), 75–90.

    Article  MathSciNet  MATH  Google Scholar 

  61. R. B. Stinchcombe, Fractals, phase transitions and criticality. Fractals in the natural sciences. Proc. Roy. Soc. London Ser. A 423,(1989), 17–33.

    Article  MathSciNet  Google Scholar 

  62. R. S. Strichartz, Taylor approximations on Sierpinski type fractals. J. Funct. Anal. 174 (2000), 76–127.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. S. Strichartz, Analysis on fractals. Notices AMS, 46 (1999), 1199–1208.

    MathSciNet  MATH  Google Scholar 

  64. A. Teplyaev, Spectral Analysis on Infinite Sierpiriski Gaskets. J. Funct. Anal. 159 (1998) 537–567.

    Article  MathSciNet  MATH  Google Scholar 

  65. A. Teplyaev, Gradients on fractals. J. Funct. Anal. 174 (2000) 128–154.

    Article  MathSciNet  MATH  Google Scholar 

  66. A. Teplyaev, Energy and Laplacian on the Sierpiiiski gasket, to appear in Mandelbrot Jubilee, Proc. Sympos. Pure Math., AMS (2003).

    Google Scholar 

  67. A. Teplyaev, Spectral zeta functions of fractals, preprint (2003).

    Google Scholar 

  68. A.Teplyaev, Self-similarity of the spectrum of fractal graphs, preprint.

    Google Scholar 

  69. A.Teplyaev, Fractal Laplacians with singular continuous spectrum, preprint.

    Google Scholar 

  70. E. Teufl, The average displacement of the simple random walk on the Sierpiriski graph. Combin. Probab. Comput. 12 (2003) 203–222.

    Article  MathSciNet  MATH  Google Scholar 

  71. E. Teufl, On the Hausdorff dimension of the Sierpiriski gasket with respect to the harmonic metric. Fractals in Graz 2001, Trends Math., Birkhauser Basel (2003) 263–270.

    Google Scholar 

  72. H. Triebel, The fractal Laplacian and multifractal quantities. Fractal Geometry and Stochastics III, Birkhauser (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Teplyaev, A. (2004). Spectral Zeta Function of Symmetric Fractals. In: Bandt, C., Mosco, U., Zähle, M. (eds) Fractal Geometry and Stochastics III. Progress in Probability, vol 57. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7891-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7891-3_16

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9612-2

  • Online ISBN: 978-3-0348-7891-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics