Skip to main content

Variational Principles and Transmission Conditions for Fractal Layers

  • Conference paper
Fractal Geometry and Stochastics III

Part of the book series: Progress in Probability ((PRPR,volume 57))

Abstract

We review some recent results for second order transmission problems with fractal layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Brezzi, G. Gilardi, Finite Elements Mathematics., Finite Element Handbook, Kardenstucer H., Norrie D.H. Eds., McGraw-Hill Books Co., New York, 1987.

    Google Scholar 

  2. A. Buffa, P. Ciarlet, On traces for functional spaces related to Maxwell’s Equations, Part I: An integration by parts formula in Lipschitz Polyhedra, Math. Meth. Appl. Sci., 24 1 (2001), 9–30.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. R. Cannon, G. H. Meyer, On a diffusion in a fractured medium, SIAM J. Appl. Math. 3 (1971), 434–448.

    Google Scholar 

  4. R. Dautray, J. L. Lions, Mathematical Analysis and Numerical Methods for Science and technology, Vol.2, Springer, Berlin, 1988.

    Book  Google Scholar 

  5. P. Grisvard, Elliptic problems in nonsmooth domains, Pitman, Boston, 1985.

    MATH  Google Scholar 

  6. P. Grisvard, Théorèmes de traces relatifs à un polyedre, C.R. Acad. Sci. Paris, Série A 278 (1974), 1581–1583.

    MathSciNet  MATH  Google Scholar 

  7. H. Yserantant, On the Multi-Level splitting of Finite Element Spaces, Numer. Math. 49 (1986), 379–412.

    Google Scholar 

  8. D. Jerison, C. E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), 161–219.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Jerison, C. E. Kenig The Neumann Problem in Lipschitz domains, Bull. Amer. Math. Soc. 4 (1981), 203–207.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Jonsson, Besov spaces on closed subsets of R n Trans. Amer. Math. Soc. 341 (1994), 355–378.

    MathSciNet  MATH  Google Scholar 

  11. A. Jonsson, Brownian motion on fractals and function spaces, Math. Z. 222 (1996), 495–504.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Jonsson, Dirichlet forms and Brownian motion penetrating fractals, Potential Analysis 13 (2000), 69–80.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Jonsson, H. Wallin, Function Spaces on Subsets of R n, Part 1 (Math. Reports Vol. 2). London: Harwood Acad. Publ. 1984.

    Google Scholar 

  14. A. Jonsson, H. Wallin, The dual of Besov spaces on fractals, Studia Math. 112 (1995), 285–300.

    MathSciNet  MATH  Google Scholar 

  15. J. Kigami, Harmonic calculus on p.c.f. selfsimilar sets, Trans. Amer. Math. Soc. 335 (1993), 721–755.

    MathSciNet  MATH  Google Scholar 

  16. V. A. Kodrat’ev, Boundary-value problems for elliptic equations in domains with conical or angular point, Trans. Moscow Math. Soc. 16 (1967), 227–314.

    Google Scholar 

  17. T. Kumagai, Brownian motion penetrating fractals and application of the trace theorem of Besov spaces, J. Funct. Anal. 170 (2000), 69–92.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Kusuoka, Diffusion processes on nested fractals, Lecture Notes in Math., 1567, Springer New York (1993).

    Google Scholar 

  19. M. R. Lancia, A transmission problem with a fractal interface, Z. Anal. and Ihre Anwend. 21 (2002), 113–133.

    MathSciNet  MATH  Google Scholar 

  20. M. R. Lancia, Second order transmission problems across cylindrical fractal surfaces, (In preparation).

    Google Scholar 

  21. M. R. Lancia, M. A. Vivaldi, Lipschitz spaces and Besov traces on selfsimilar fractals, Rend. Accad. Naz. XL, Mem. Mat. Appl. 23 (1999), 101–106.

    Google Scholar 

  22. M. R. Lancia, M. A. Vivaldi, On the regularity of the solutions for transmission problems, Adv. Math. Sc. Appl. 12 (2002), 455–466.

    MathSciNet  MATH  Google Scholar 

  23. M. R. Lancia, M. A. Vivaldi, Asymptotic convergence of transmission energy forms,Adv. Math. Sc. Appl. 13 (2003), 315–341.

    MathSciNet  MATH  Google Scholar 

  24. T. Lindstrøm, Brownian motion on nested fractals,Mem. Am. Math. Soc. n. 20 (1990).

    Google Scholar 

  25. T. Lindstrøm, Brownian motion penetrating the Siepinski gasket,Asymptotic problems in probability theory: stochastics models and diffusions on fractals, Elworthy K.D., Ikeda N. Eds., Longman, 1993.

    Google Scholar 

  26. J. Malý, U. Mosco, Remarks on measure-valued Lagrangians on homogeneous spaces, Ric. Mat. Napoli, 48 suppl. (1999), 217–231

    MATH  Google Scholar 

  27. U. Mosco, Composite media and asymptotic Dirichlet forms, J. Funct. Anal. 123(2) (1994) 368–421.

    Article  MathSciNet  MATH  Google Scholar 

  28. U. Mosco, Energy functionals on certain fractal structures, J. Convex Anal. 9(1) (2002), 1–20.

    MathSciNet  Google Scholar 

  29. U. Mosco, M. A. Vivaldi, Variational problems with fractal layers, Preprint Me. Mo. Mat. n. 23 (2003).

    Google Scholar 

  30. S. A. Nazarov, B. A. Plamenovsky, Elliptic problems in domains with piece-wise smooth boundaries, De Gruyter expocitions in Mathematics, Berlin-New York (1994).

    Book  Google Scholar 

  31. J. Neas, Les methodes directes en theorie des eguationes elliptiques, Masson, Paris, 1967.

    Google Scholar 

  32. K. P. Paluba, Some function space related to the Brownian motion on simple nested fractals, Stoch. and Stoch. Rep. 67 (1999), 267–285.

    MATH  Google Scholar 

  33. H. Pham Huy, E. Sanchez–Palencia, Phénomènes des transmission à travers des couches minces de conductivité élevée, J. Math. Anal. Appl. 47 (1974), 284–309.

    Article  MathSciNet  MATH  Google Scholar 

  34. H. Triebel, Fractals and Spectra. Related to Fourier Analysis and Function Spaces, Monographs in Mathematics, Vol. 91, Birkhäuser, Basel, 1997.

    Google Scholar 

  35. A. D. Venttsel, On boundary conditions for multidimensional diffusion processes, Teor. Veroyatnost. i Primenen. 4 (1959), 172–185; English translation, Theor. Probability Appl. 4 (1959), 164–177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Vivaldi, M.A. (2004). Variational Principles and Transmission Conditions for Fractal Layers. In: Bandt, C., Mosco, U., Zähle, M. (eds) Fractal Geometry and Stochastics III. Progress in Probability, vol 57. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7891-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7891-3_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9612-2

  • Online ISBN: 978-3-0348-7891-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics