Skip to main content

Additive Lévy Processes: Capacity and Hausdorff Dimension

  • Conference paper
Fractal Geometry and Stochastics III

Part of the book series: Progress in Probability ((PRPR,volume 57))

Abstract

This is a survey on recently-developed potential theory of additive Lévy processes and its applications to fractal geometry of Lévy processes.

Additive Lévy processes arise naturally in the studies of the Brownian sheet, intersections of Lévy processes and so on. We first summarize some recent results on the novel connections between an additive Lévy process X in Rd, and a natural class of energy forms and their corresponding capacities. We then apply these results to study the Hausdorff dimension of the range and self-intersections of an ordinary Lévy process, solving several long-standing problems in the folklore of the theory of Lévy processes. We also list several open problems in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Adler (1981), The Geometry of Random Fields. Wiley, New York.

    MATH  Google Scholar 

  2. R. J. Adler, D. Monrad, R. H. Scissors and R. Wilson (1981), Representation, decompositions and sample function continuity of random fields with independent increments. Stoch. Proc. Appl. 15, 3–30.

    Article  MathSciNet  Google Scholar 

  3. P. Becker-Kern, M. M. Meerschaert and H. P. Scheffler (2003), Hausdorff dimension of operator stable sample paths. Monatsh. Math. to appear.

    Google Scholar 

  4. C. Berg and G. Forst (1975), Potential Theory on Locally Compact Abelian Groups. Springer-Verlag, New York-Heidelberg.

    Book  MATH  Google Scholar 

  5. J. Bertoin (1996), Lévy Processes. Cambridge Univ. Press.

    MATH  Google Scholar 

  6. J. Bertoin (1999), Subordinators: Examples and Applications. In: Lectures on Probability Theory and Statistics (Saint-Flour,1997), pp. 1–91, Lecture Notes in Math., 1717, Springer-Verlag, Berlin.

    Google Scholar 

  7. R. M. Blumenthal and R. Getoor (1960), A dimension theorem for sample functions of stable processes. Illinois J. Math. 4, 370–375.

    MathSciNet  MATH  Google Scholar 

  8. R. M. Blumenthal and R. Getoor (1961), Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10,493–516.

    MathSciNet  MATH  Google Scholar 

  9. R. M. Blumenthal and R. Getoor (1968), Markov Processes and Potential Theory. Academic Press, New York.

    MATH  Google Scholar 

  10. J. Bretagnolle (1971), Résultats de Kesten sur les processus a accroisements indépendants. Sém. de Prob. V, Lecture Notes in Math., 191, 21–36, SpringerVerlag, Berlin.

    Google Scholar 

  11. R. C. Dalang (2003), Level sets and excursions of the Brownian sheet. In: Topics in spatial stochastic processes (Martina Franca, 2001), 167–208Lecture Notes in Math., 1802, Springer, Berlin.

    Google Scholar 

  12. R. C. Dalang and T. S. Mountford (1996), Nondifferentiability of curves on the Brownian sheet. Ann. Probab. 24, 182–195.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. C. Dalang and T. S. Mountford (1997), Points of increase of the Brownian sheet, Probab. Th. Rel. Fields, 108, 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. C. Dalang and T. Mountford (2001), Jordan curves in the level sets of additive Brownian motion. Trans. Amer. Math. Soc. 353, 3531–3545.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. C. Dalang and T. Mountford (2002), Eccentric behaviors of the Brownian sheet along lines. Ann. Probab. 30, 293–322.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. C. Dalang and T. Mountford (2003), Non-independence of excursions of the Brownian sheet and of additive Brownian motion. Trans. Amer. Math. Soc. 355 967–985

    Article  MathSciNet  MATH  Google Scholar 

  17. R. C. Dalang and J. B. Walsh (1992), The sharp Markov property of Levy sheets. Ann. Probab. 20 591–626.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. C. Dalang and J. B. Walsh (1993a), Geography of the level sets of the Brownian sheet. Probab. Th. Rel. Fields,96 153–176.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. C. Dalang and J. B. Walsh (1993b), The structure of a Brownian bubble. Probab. Th. Rel. Fields, 96 475–501.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Dembo, Y. Peres, J. Rosen and 0. Zeitouni (2000), Thick points for spatial Brownian motion: Multifractal analysis of occupation measure. Ann. Prob., 28 135.

    MathSciNet  Google Scholar 

  21. J. Doob (1984), Classical Potential Theory and its Probabilistic Counterpart. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  22. W. Ehm (1981), Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw Gebiete 56,195–228.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. N. Evans (1987a), Multiple points in the sample paths of a Levy process. Probab. Th. Rel. Fields 76 359–367.

    Article  Google Scholar 

  24. S. N. Evans (1987b), Potential theory for a family of several Markov processes. Ann. Inst. Henri Poincare Probab. Statist. 23 499–530.

    MATH  Google Scholar 

  25. K. J. Falconer(1990), Fractal Geometry - Mathematical Foundations and Applications. Wiley & Sons, Chichester.

    MATH  Google Scholar 

  26. P. J. Fitzsimmons and T. S. Salisbury (1989), Capacity and energy for multiparameter processes. Ann. Inst. Henri Poincare Probab. Statist. 25 325–350.

    MathSciNet  MATH  Google Scholar 

  27. B. E. Fristedt (1967), An extension of a theorem of S. J. Taylor concerning the multiple points of the symmetric stable process. Z. Wahrsch. Verw. Gebiete 9 62–64.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. E. Fristedt (1974), Sample functions of stochastic processes with stationary, independent increments. Adv. in Probab. III, pp. 241–396, Dekker.

    MathSciNet  Google Scholar 

  29. B. E. Fristedt and W. E. Pruitt (1971), Lower functions for increasing random walks and subordinators. Z. Wahrsch. Verw. Gebiete 18 167–182.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Hawkes (1977), Local properties of some Gaussian processes. Z. Wahrsch. Verw. Gebiete 40 309–315.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Hawkes (1978a), Measures of Hausdorff type and stable processes. Mathematika 25 202–210.

    Article  MathSciNet  Google Scholar 

  32. J. Hawkes (1978b), Image and intersection sets for subordinators. J. London Math. Soc. (2) 17 567–576.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Hawkes (1978c), Multiple points for symmetric Levy processes. Math. Proc. Camb. Philos. Soc. 83 83–90.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Hawkes (1981), Trees generated by a simple branching process. J. London Math. Soc. (2) 24 373–384.

    Article  MathSciNet  MATH  Google Scholar 

  35. J. Hawkes (1998), Exact capacity results for stable processes. Probab. Th. Rel. Fields 112 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  36. W. J. Hendricks (1973), A dimension theorem for sample functions of processes with stable components. Ann. Probab. 1 849–853.

    Article  MathSciNet  MATH  Google Scholar 

  37. W. J. Hendricks (1974), Multiple points for a process in with stable components. Z. Wahrsch. Verw. Gebiete 28 113–128.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Hirsch (1995), Potential Theory related to some multiparameter processes. Potential Analysis, 4 245–267.

    Article  MathSciNet  MATH  Google Scholar 

  39. F. Hirsch and S. Song (1995a), Symmetric Skorohod topology on n-variable functions and hierarchical Markov properties of n-parameter processes. Prob. Th. Rel. Fields, 103(1), 25–43.

    Article  MathSciNet  MATH  Google Scholar 

  40. F. Hirsch and S. Song (1995b), Markov properties of multiparameter processes and capacities. Prob. Th. Rel. Fields,103(1), 45–71.

    Article  MathSciNet  MATH  Google Scholar 

  41. J.-P. Kahane (1972), Ensembles parfaits et processus de Lévy. Period. Math. Hun-gar. 2 49–59.

    Article  MathSciNet  MATH  Google Scholar 

  42. J.-P. Kahane (1983), Points multiples des processus de Levy symetriques stables restreints á un ensemble de valeurs du temps. Seminar on Harmonic Analysis, 1981–1982,pp. 74–105, Publ. Math. Orsay 83 2, Univ. Paris XI, Orsay.

    Google Scholar 

  43. J.-P. Kahane (1985a), Some Random Series of Functions. 2nd edition Cambridge Univ. Press.

    MATH  Google Scholar 

  44. J.-P. Kahane (1985b), Ensembles aléatoires et dimensions. In: Recent Progress in Fourier Analysis (El Escorial, 1983), pp 65–121 North-Holland Math. Stud., 111, North-Holland, Amsterdam.

    Chapter  Google Scholar 

  45. R. Kaufman (1972), Measures of Hausdorff-type, and Brownian motion. Mathematika 19 115–119.

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Kaufman (1975), Large increments of Brownian motion. Nagoya Math. J., 56 139–145.

    MathSciNet  MATH  Google Scholar 

  47. R. Kaufman and J. M. Wu (1982), Parabolic potential theory. J. Differential Equations 43 204–234.

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Kesten (1969), Hitting probabilities of single points for processes with stationary independent increments. Mem. Amer. Math. Soc. 93 129 pp.

    MathSciNet  Google Scholar 

  49. D. Khoshnevisan (1995), On the distribution of bubbles of the Brownian sheet. Ann. Probab. 23 786–805.

    Article  MathSciNet  MATH  Google Scholar 

  50. D. Khoshnevisan (1999), Brownian sheet images and Bessel-Riesz capacity. Trans. Amer. Math. Soc. 351 2607–2622.

    Article  MathSciNet  MATH  Google Scholar 

  51. D. Khoshnevisan (2002), Multi-Parameter Processes: An Introduction to Random Fields. Springer-Verlag, Berlin.

    Google Scholar 

  52. D. Khoshnevisan, Y. Peres and Y. Xiao (2000), Limsup random fractals. Electron. J. Probab. 5 No.5–24 pp.

    Article  MathSciNet  Google Scholar 

  53. D. Khoshnevisan and Z. Shi (1999), Brownian sheet and capacity. Ann. Probab. 27 1135–1159.

    Article  MathSciNet  MATH  Google Scholar 

  54. D. Khoshnevisan and Z. Shi (2000), Fast sets and points for fractional Brownian motion. Séminaire de Probabilités XXXIV, pp. 393–416, Lecture Notes in Math., 17–29 Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  55. D. Khoshnevisan and Y. Xiao (2002), Lével sets of additive Levy processes. Ann. Probab. 30 62–100.

    Article  MathSciNet  MATH  Google Scholar 

  56. D. Khoshnevisan and Y. Xiao (2003a), Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes. Proc. Amer. Math. Soc. 131, 2611–2616. Additive Levy Processes 169

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Khoshnevisan and Y. Xiao (2003b), Lévy processes: capacity and Hausdorff dimension. Submitted.

    Google Scholar 

  58. D. Khoshnevisan, Y. Xiao and Y. Zhong (2003a), Measuring the range of an additive Lévy processes. Ann. Probab. 31 1097–1141.

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Khoshnevisan, Y. Xiao and Y. Zhong (2003b), Local times of additive Lévy processes. Stoch. Process. Appl. 104 193–216.

    Article  MathSciNet  MATH  Google Scholar 

  60. J.-F. Le Gall, J. Rosen and N.-R. Shieh (1989), Multiple points of Lévy processes. Ann. Probab. 17 503–515.

    Article  MathSciNet  MATH  Google Scholar 

  61. R. Lyons (1990), Random walks and percolation on trees. Ann. Probab. 18 931–958.

    Article  MathSciNet  MATH  Google Scholar 

  62. P. Mattila (1995), Geometry of Sets and Measures in Euclidean Spaces.

    Book  Google Scholar 

  63. H. P. McKean, Jr. (1955), Hausdorff-Besicovitch dimension of Brownian motion paths. Duke Math. J. 22 229–234.

    Article  MathSciNet  MATH  Google Scholar 

  64. M. Meerschaert and Y. Xiao (2003), Dimension results for the sample paths of operator stable processes. Submitted.

    Google Scholar 

  65. P. W. Millar (1971), Path behavior of processes with stationary independent increments. Z. Wahrsch. Verw. Gebiete 17 53–73.

    Article  MathSciNet  Google Scholar 

  66. S. Orey and S. J. Taylor (1974), How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc., 28 174–192.

    Article  MathSciNet  MATH  Google Scholar 

  67. R. Pemantle, Y. Peres, and J. W. Shapiro (1996), The trace of spatial Brownian motion is capacity-equivalent to the unit square. Probab. Th. Rel. Fields 106 379–399.

    Article  MathSciNet  MATH  Google Scholar 

  68. Y. Peres (1996), Remarks on intersection-equivalence and capacity-equivalence. Ann. Inst. Henri Poincaré Phys. Théor. 64 339–347.

    MathSciNet  MATH  Google Scholar 

  69. Y. Peres (1999), Probability on trees: an introductory climb. In: Lectures on Probability Theory and Statistics (Saint-Flour, 1997), pp. 193–280, Lecture Notes in Math., 1717 Springer-Verlag, Berlin.

    Google Scholar 

  70. W. E. Pruitt (1969), The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 371–378.

    MathSciNet  MATH  Google Scholar 

  71. J. Rosen (1983), A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Phys. 88 327–338.

    Article  MathSciNet  MATH  Google Scholar 

  72. J. Rosen (1984), Self-intersections of random fields. Ann. Probab. 12 108–119.

    Article  MATH  Google Scholar 

  73. J. Rosen (2000), Capacitary moduli for Levy processes and intersections. Stoch. Process. Appl. 89 269–285.

    Article  MATH  Google Scholar 

  74. K. Sato (1999), Lévy Processes and Infinitely Divisible Distributions Cambridge Univ. Press, Cambridge.

    MATH  Google Scholar 

  75. N. R. Shieh (1998), Multiple points of dilation-stable Lévy processes. Ann. Probab. 26 1341–1355.

    Article  MathSciNet  MATH  Google Scholar 

  76. M. L. Straf (1972), Weak convergence of stochastic processes with several parameters. In: Proc. Sixth Berkeley Sympos. Math. Statist. Probab. (Univ. California, Berkeley, Calif., 1970/1971),2 pp. 187–221. Univ. California Press, Berkeley.

    Google Scholar 

  77. S. J. Taylor (1953), The Hausdorff a-dimensional measure of Brownian paths in n-space. Proc. Camb. Philos. Soc. 49 31–39.

    Article  MATH  Google Scholar 

  78. S. J. Taylor (1955), The a-dimensional measure of the graph and set of zeros of a Brownian path. Proc. Camb. Philos. Soc. 51,265–274.

    Article  MATH  Google Scholar 

  79. S. J. Taylor (1966), Multiple points for the sample paths of the symmetric stable process. Z. Wahrsch. Verw. Gebiete 5,247–264.

    Article  MATH  Google Scholar 

  80. S. J. Taylor (1986a), The measure theory of random fractals. Math. Proc. Camb. Philos. Soc. 100, 383–406.

    Article  MATH  Google Scholar 

  81. S. J. Taylor (1986b), The use of packing measure in the analysis of random sets. Lecture Notes in Math., 1203 214–222.

    Article  Google Scholar 

  82. S. J. Taylor and N. A. Watson (1985), A Hausdorff measure classification of polar sets for the heat equation. Math. Proc. Camb. Philos. Soc. 97 325–344.

    Article  MathSciNet  MATH  Google Scholar 

  83. M. E. Vares (1983), Local times for two-parameter Le.Cry processes. Stochastic Process. Appl., 15 59–82.

    Article  MathSciNet  MATH  Google Scholar 

  84. J. B. Walsh (1986). Martingales with a Multidimensional Parameter and Stochastic Integrals in the Plane. (Ed’s: G. del Pifio and R. Robodello), Lecture Notes in Math. 12–15 Springer, Berlin.

    Google Scholar 

  85. N. A. Watson (1976), Green functions, potentials, and the Dirichlet problem for the heat equation. Proc. London Math. Soc. 33 251–298; Corrigendum, ibid., 37 (1978), 32–34.

    Article  MathSciNet  MATH  Google Scholar 

  86. N. A. Watson (1978), Thermal capacity. Proc. London Math. Soc. 37 342–362.

    Article  MathSciNet  MATH  Google Scholar 

  87. Y. Xiao (2003), Random fractals and Markov processes. Proceedings of the Conference on Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, (to appear).

    Google Scholar 

  88. Y. Zhong and Y. Xiao (1995), Self-intersection local times and multiple points of the stable sheet. Acta Math. Sci. (Chinese) 15 141–152.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this paper

Cite this paper

Khoshnevisan, D., Xiao, Y. (2004). Additive Lévy Processes: Capacity and Hausdorff Dimension. In: Bandt, C., Mosco, U., Zähle, M. (eds) Fractal Geometry and Stochastics III. Progress in Probability, vol 57. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7891-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7891-3_10

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9612-2

  • Online ISBN: 978-3-0348-7891-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics