Skip to main content

On the Global Well-posedness and Stability of the Navier—Stokes and the Related Equations

  • Chapter
Contributions to Current Challenges in Mathematical Fluid Mechanics

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We study the problem of global well-posedness and stability in the scale invariant Besov spaces for the modified 3D Navier-Stokes equations with the dissipation term, −Δu replaced by \( {( - \Delta )^\alpha }u,0 \leqslant \alpha < \frac{5}{4} \). We prove the unique existence of a global-in-time solution in \( B_{2,1}^{\frac{5}{2} - 2\alpha } \) for initial data having small \( B_{2,1}^{\frac{5}{2} - 2\alpha } \) norm for all \( \alpha \in \left[ {0,\frac{5}{4}} \right) \). We also obtain the global stability of the solutions \( B_{2,1}^{\frac{5}{2} - 2\alpha } \) for \( \alpha \in \left[ {\frac{1}{2},\frac{5}{4}} \right) \). In the case \( \frac{1}{2} < \alpha < \frac{5}{4} \), we prove the unique existence of a global-in-time solution in \( B_{p,\infty }^{\frac{3}{p} + 1 - 2\alpha } \) for small initial data, extending the previous results for the case α = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Beirao da Veiga and P. Secchi, LP-stability for the strong solutions of the NavierStokes equations in the whole space, Arch. Rat. Mech. Anal. 98 (1987), 65–70.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Bourdaud, Reálisations des espaces de Besov homogènes, Arkiv för matematik 26 (1988), 41–54.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. Cannone, Ondelettes, Paraproduits et Navier-Stokes, Diderot Editeur, 1995.

    MATH  Google Scholar 

  4. M. Cannone, A generalization of a theorem by Kato on Navier-Stokes equations, Rev. Mat. Iberoamericana 13 (1997), 515–541.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Cannone and G. Karch, Incompressible Navier-Stokes equations in abstract Ba-nach spaces, Tosio Kato’s Method and Principle for Evolution equations in Mathematical Physics, (2001).

    Google Scholar 

  6. M. Cannone and Y. Meyer, Littlewood-Paley decomposition and Navier-Stokes equations, Methods and Applications of Analysis 2 (1995), 307–319.

    MathSciNet  MATH  Google Scholar 

  7. M. Cannone, Y. Meyer, and F. Planchon, Solutions auto-similaires des équations de Navier-Stokes in I“ 3, Exposé n. VIII, Séminaire X-EDP, Ecole Polytechnique (Janvier 1994).

    Google Scholar 

  8. M. Cannone and F. Planchon, On the nonstationary Navier-Stokes equations with an external force, Advances in Differential Equations 4 (1999), 697–730.

    MathSciNet  MATH  Google Scholar 

  9. M. Cannone and F. Planchon, On the regularity of the bilinear term for solutions to the incompressible Navier-Stokes equations 16 (2000), 1–16.

    MathSciNet  MATH  Google Scholar 

  10. D. Chae, On the Well-Posedness of the Euler Equations in the Triebel-Lizorkin Spaces, Comm. Pure Appl. Math. 55 (2002), 654–678.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Chae, Local Existence and Blow-up Criterion for the Euler Equations in the Besov Spaces, RIM-GARC Preprint no. 01–7.

    Google Scholar 

  12. J.-Y. Chemin, Remarques sur l’existence globale pour le système de Navier-Stokes incompressible, SIAM J. Math. Anal. 23 (1992), 20–28.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.-Y. Chemin, About Navier-Stokes system,Prépublication du Laboratorie d’analyse numérique de Paris 6, R96023, 1996.

    Google Scholar 

  14. J.-Y. Chemin, Perfect incompressible fluids, Clarendon Press, Oxford, (1998).

    MATH  Google Scholar 

  15. J.-Y. Chemin, Théorèmes d’unicité pour le système de Navier-Stokes tridimensionnel, Journal d’Analyse Mathématique 77 (1999), 27–50.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. math. 141 (2000), 579–614.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations 26 (2001), 1183–1233.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley theory and the study of function spaces, AMS-CBMS Regional Conference Series in Mathematics 79 (1991).

    Google Scholar 

  19. H. Fujita and T. Kato, On the Navier-Stokes initial value problem I, Arch. Rational Mech. Anal. 16 (1964), 269–315.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. T. Kato, Strong LP solutions of the Navier-Stokes equations in Rm. with applications to weak solutions, Math. Zeit. 187 (1984), 471–480.

    Article  MATH  Google Scholar 

  21. H. Koch and D. Tataru, Well-posedness for the Navier-Stokes equations, Advances in Mathematics 157 (2001), 22–35.

    Article  MathSciNet  MATH  Google Scholar 

  22. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaries, Dunod, Paris, 1969.

    Google Scholar 

  23. G. Ponce, R. Racke, T.C. Sideris, and E.S. Titi, Global stability of large solutions to the 3D Navier-Stokes equations, Commun. Math. Phys. 159 (1994), 329–341.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. H. Triebel, Theory of Function Spaces,Birkhäuser, 1983.

    Book  Google Scholar 

  25. M. Wiegner, Decay and stability in L P for strong solutions of Cauchy problem for the Navier-Stokes equations, The Navier-Stokes equations. Theory and numerical methods, Proceedings Oberwolfach (1988), eds. J.G. Heywood, et al., Lect. Notes Math. 1431, Berlin, Heidelberg, New York, Springer, 1990, 95–99.

    Google Scholar 

  26. M. Vishik, Hydrodynamics in Besov spaces, Arch. Rational Mech. Anal 145 (1998), 197–214.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Chae, D., Lee, J. (2004). On the Global Well-posedness and Stability of the Navier—Stokes and the Related Equations. In: Galdi, G.P., Heywood, J.G., Rannacher, R. (eds) Contributions to Current Challenges in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7877-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7877-7_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9606-1

  • Online ISBN: 978-3-0348-7877-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics