Skip to main content

On Multidimensional Burgers Type Equations with Small Viscosity

  • Chapter

Part of the book series: Advances in Mathematical Fluid Mechanics ((AMFM))

Abstract

We consider the Cauchy problem for a multidimensional Burgers type equation with periodic boundary conditions. We obtain upper and lower bounds for derivatives of solutions for this equation in terms of powers of the viscosity and discuss how these estimates relate to the Kolmogorov-Obukhov spectral law. Next we use the estimates obtained to get certain bounds for derivatives of solutions of the Navier-Stokes system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biryuk A. Spectral Properties of Solutions of Burgers Equation with Small Dissipation. Funct. Anal. Appl. 35, no. 1 (2001), 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  2. Biryuk A. On Spatial Derivatives of Solutions of the Navier-Stokes Equation with Small Viscosity. Uspekhi Mat. Nauk 57 no 1. (2002), 147–148.

    Article  MathSciNet  Google Scholar 

  3. Dubrovin B. A.; Novikov S. P.; Fomenko A. T. Modern geometry methods and applications. Part I. The geometry of surfaces, transformation groups, and fields. Part II. The geometry and topology of manifolds. Graduate Texts in Mathematics 93, 104. Springer-Verlag 1984, 1985.

    Google Scholar 

  4. Friedman A. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  5. Frish U. Turbulence. The legacy of A.N. Kolmogorov Cambridge Univ. Press, 1995.

    Google Scholar 

  6. Jefferson D. A numerical and analytical approach to turbulence in a special class of complex Ginzburg-Landau equations. Heriot-Watt University Thesis, 2002.

    Google Scholar 

  7. Halmos P. R. Finite-dimensional vector spaces. Springer-Verlag, New York - Heidelberg, 1974.

    Book  MATH  Google Scholar 

  8. Hartman Ph. Ordinary Differential Equations. John Wiley & Sons Inc., New York, 1964.

    MATH  Google Scholar 

  9. Hörmander L. Lectures on nonlinear hyperbolic differential equations. Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  10. Kolmogorov A. N. On inequalities for supremums of successive derivatives of a function on an infinite interval. Paper 40 in “ Selected works of A.N. Kolmogorov, vol.1 ” Moscow, Nauka 1985. Engl. translation: Kluwer, 1991.

    Google Scholar 

  11. Kukavica I., Grujie Z. Space Analyticity for the Navier-Stokes and Related Equations with Initial Data in LP. Journal of Functional Analysis 152, no. 2 (1998), 447–466.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kuksin S. Spectral Properties of Solutions for Nonlinear PDE’s in the Turbulent Regime. GAFA, 9, no. 1 (1999), 141–184.

    Article  MATH  Google Scholar 

  13. Pogorelov A. V. Extensions of the theorem of Gauss on spherical representation to the case of surfaces of bounded extrinsic curvature. Dokl. Akad. Nauk. SSSR (N.S.) 111, no.5 (1956), 945–947.

    MathSciNet  MATH  Google Scholar 

  14. Spivak M. A comprehensive introduction to differential geometry. Vol. III, Publish or Perish, Boston, Mass., 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Basel AG

About this chapter

Cite this chapter

Biryuk, A. (2004). On Multidimensional Burgers Type Equations with Small Viscosity. In: Galdi, G.P., Heywood, J.G., Rannacher, R. (eds) Contributions to Current Challenges in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7877-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7877-7_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9606-1

  • Online ISBN: 978-3-0348-7877-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics